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Abstract

Hospital readmissions within 30 days affect 15–20% of patients, generating over $40 billion in poten-

tially preventable costs annually. We developed two prediction models using 113,312 internal medicine

admissions (2017–2023): ENHANCE, an interpretable clinical score, and ML-ENHANCE, a machine

learning ensemble. Using decision-theoretic threshold optimization across cost ratios from 0.5:1 to 20:1,

we demonstrate that ML-ENHANCE (AUC 0.752) substantially outperforms ENHANCE (AUC 0.696)

and HOSPITAL (AUC 0.676). At the 5:1 cost ratio, ML-ENHANCE matches ENHANCE sensitivity

(76.9%) while achieving 8.3 percentage points higher specificity, translating to 7,400 fewer unnecessary

interventions annually and projected savings of $69.3 million versus $14.7 million for ENHANCE. ML-

ENHANCE achieves 4–5 times greater economic impact, supporting deployment in automated population

health applications.

1 Introduction

Hospital readmissions within 30 days of discharge represent a critical healthcare challenge, affecting 15–

20% of inpatients and generating over $40 billion in potentially preventable costs annually in the United

States [1, 2]. Beyond economic burden, readmissions signal failures in care transitions while undermining

quality metrics that increasingly determine institutional reimbursement [3].
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The HOSPITAL score, the most extensively validated clinical instrument for 30-day readmission pre-

diction, achieves only moderate discrimination (AUC 0.65–0.70) with a limited 2.8-fold risk discrimination

range [4]. This performance ceiling reflects the score’s development before comprehensive electronic health

records, overlooking readily available clinical data. More critically, its three-category risk stratification

provides insufficient granularity for precise intervention targeting.

Contemporary machine learning approaches demonstrate 0.05–0.10 AUC improvements over traditional

scores [5, 6]. While interpretability concerns have historically limited adoption, two developments warrant

reconsideration. First, healthcare systems increasingly deploy automated population health platforms where

algorithmic transparency is less critical than in bedside decision-making. Second, traditional AUC valida-

tion fails to demonstrate whether discrimination improvements translate to clinically meaningful operating

characteristics under realistic cost constraints.

We developed a dual-model framework analyzing 113,312 consecutive hospitalizations (2017–2023) with

three objectives: creating an interpretable ENHANCE score, developing ML-ENHANCE using ensemble

methods to establish the performance ceiling, and employing decision-theoretic threshold optimization to

quantify clinical and economic value under explicit cost constraints. Our analysis demonstrates that ML-

ENHANCE delivers substantially superior performance (AUC 0.752 vs 0.676), and cost-based optimization

reveals this translates to 4–5 times greater economic impact than interpretable alternatives, supporting

stratified deployment based on use-case requirements.

2 Methods

2.1 Study Design and Population

We performed a retrospective cohort study using electronic health record data from a large academic health

system (2017–2023). The Institutional Review Board approved the project with waiver of informed consent.

The study included adult patients (≥18 years) with internal medicine admissions, excluding those with

missing discharge dates, length of stay ≤1 or >365 days, or missing essential demographic data. The final

cohort comprised 113,312 patients with 23,692 (20.9%) experiencing 30-day readmission. Temporal validation

used 2017–2020 for development (n=54,353) and 2021–2023 for validation (n=58,959; Supplementary Table

S26. The study flow diagram is presented in Figure 1.

2.2 ENHANCE Score Development

We employed a nine-domain analytical framework examining comorbidity patterns, laboratory values, emer-

gency department admission patterns, temporal factors, ECG findings, subgroup interactions, machine learn-

ing benchmarks, temporal stability, and comprehensive integration (Supplementary Appendix). The EN-

HANCE score was developed using sparse logistic regression with L1 regularization (C=1.5). The final

scoring system (Table 1; detailed derivation in Supplementary Table S22 incorporates: baseline HOSPITAL

score (1 point per unit), enhanced laboratory thresholds (severe hypoalbuminemia <3.0 g/dL, moderate ane-

mia <10.0 g/dL, kidney dysfunction urea >60 mg/dL: 2 points each), clinical factors (malignancy history:

1 point; prior admissions 1–2/3–4/≥5: 2/4/6 points), interaction terms (CKD+CVA: 2 points, CHF+ED:

1 point), and weekend admission (1 point). Risk categories were defined as Low (0–3), Intermediate (4–6),

High (7–10), and Very High (>10 points).
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All inpatient admissions
N = 117,025

Internal-medicine admissions
N = 113,655

- dept filter

Discharge date present
N = 113,655

- discharge date

Study period 2017–2023
N = 113,655

- period filter

Age ≥ 18 years
N = 113,655

- adult filter

Length of stay > 0.1 & ≤ 365 days
N = 113,312

- LOS filter

Final cohort
N = 113,312

Development set
2017–2020
N = 54,261

Validation set
2021–2023
N = 59,051

Figure 1: Study flow diagram illustrating patient selection, inclusion and exclusion criteria, and temporal
validation split. The final cohort of 113,312 patients is divided into development (54,353; 2017–2020) and
validation (58,959; 2021–2023) sets.
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Detailed methodology and results from each analytical domain are provided in the Supplementary Ap-

pendix, including comorbidity analysis (Supplementary Tables S4-S6, S5, and S14, Supplementary Figure S7,

laboratory value optimization (Supplementary Table S7, Supplementary Figure S8, emergency department

patterns (Supplementary Tables S8-S9, Supplementary Figure S9, temporal patterns (Supplementary Tables

S10-S11, Supplementary Figure S10), ECG findings (Supplementary Table S12, Supplementary Figure S11,

subgroup interactions (Supplementary S13-S15, Supplementary Figure S12), machine learning benchmarks

(Supplementary Tables S16-S18, Supplementary Figure S13), and temporal validation (Supplementary Ta-

bles S19-S21, Supplementary Figure S14).

Table 1: ENHANCE Score Components and Point Assignment

Component Criteria Points

HOSPITAL Score Original 7 components ×1
Severe hypoalbuminemia Albumin < 3.0 g/dL +2
Moderate anemia Hemoglobin < 10.0 g/dL +2
Kidney dysfunction Urea > 60 mg/dL +2
History of malignancy Present +1
Prior admissions (1–2) Prior year count +2
Prior admissions (3–4) Prior year count +4
Prior admissions (≥ 5) Prior year count +6
CKD + CVA synergy Both conditions present +2
CHF + ED interaction Both factors present +1
Weekend admission Weekend +1

2.3 ML-ENHANCE Development

ML-ENHANCE employs a soft voting classifier ensemble combining random forest, gradient boosting, and

XGBoost (each with 100 estimators). The ensemble uses 14 features identified through the analytical frame-

work, including prior admissions count, enhanced laboratory score, HOSPITAL components, and comorbidity

indicators. Hyperparameters were optimized using 5-fold stratified cross-validation on the development set,

with evaluation on the temporally held-out validation set. ML-ENHANCE outputs continuous probability

estimates enabling threshold optimization for specific cost scenarios.

2.4 Statistical Analysis

Model discrimination was assessed using AUC with 95% confidence intervals (DeLong’s method). Calibration

was evaluated using reliability diagrams. Statistical significance was set at p<0.05. Analyses were performed

using Python 3.9 with scikit-learn. The primary outcome was 30-day all-cause readmission.

2.5 Decision-Theoretic Threshold Optimization

Clinical deployment requires selecting specific thresholds rather than relying solely on AUC. The expected

cost per patient at threshold t is:

C(t) = FPR(t)× (1− π)× CFP + FNR(t)× π × CFN (1)

where π = 0.209 is baseline readmission prevalence. We estimated average readmission cost at $16,300 based

on Healthcare Cost and Utilization Project data [7]. For Israeli capitation-based systems, we adopted a
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day-denominated framework (interventions: 1 day; missed readmissions: 3 days), yielding a 3:1 cost ratio.

We evaluated ratios from 0.5:1 through 20:1, with confidence intervals from 300 bootstrap iterations. Cost

scenario details are presented in Supplementary Table S1.

3 Results

3.1 Study Population

The cohort comprised 113,312 patients (mean age 70.0±17.0 years; 52.6% male). The 30-day readmission

rate was 20.9%. Patients who were readmitted were older (71.8±16.0 vs 69.4±17.2 years), more likely

male (54.4% vs 52.2%), and had higher comorbidity burden including diabetes (35.6% vs 27.6%), chronic

kidney disease (11.7% vs 7.3%), and malignancy (11.3% vs 6.7%; all p<0.001); readmission rates increased

progressively with the number of comorbidities (Supplementary Table S5). Complete baseline characteristics

are presented in Table 2. The HOSPITAL score achieved AUC 0.676 (95% CI: 0.671–0.681) with readmission

rates of 16.2% (low risk), 33.0% (intermediate), and 45.3% (high risk), representing 2.8-fold discrimination.

Table 2: Baseline Characteristics of Study Population Stratified by 30-Day Readmission Status

Characteristic No Readmission Readmission P-value
(n = 89,620) (n = 23,692)

Demographics
Age, mean ± SD (years) 69.4 ± 17.2 71.8 ± 16.0 < 0.001
Male sex, n (%) 46,752 (52.2) 12,891 (54.4) < 0.001
Comorbidities, n (%)
Hypertension 45,846 (51.2) 11,942 (50.4) 0.037
Diabetes mellitus 24,711 (27.6) 8,442 (35.6) < 0.001
Chronic kidney disease 6,549 (7.3) 2,782 (11.7) < 0.001
Malignancy 6,007 (6.7) 2,673 (11.3) < 0.001
Congestive heart failure 4,485 (5.0) 1,820 (7.7) < 0.001
Laboratory Values, mean ± SD
Hemoglobin (g/dL) 11.8 ± 2.3 10.8 ± 2.4 < 0.001
Sodium (mEq/L) 139.3 ± 3.9 138.9 ± 4.5 < 0.001
Albumin (g/dL) 3.5 ± 0.5 3.2 ± 0.6 < 0.001
Clinical Factors
Length of stay, median (IQR) 1.6 (0.8–3.1) 1.8 (0.9–3.4) < 0.001
Emergency admission, n (%) 86,505 (96.5) 22,747 (96.0) < 0.001
Prior year admissions, median (IQR) 0 (0–1) 1 (0–2) < 0.001
HOSPITAL score, mean ± SD 2.9 ± 1.8 3.8 ± 2.1 < 0.001

3.2 Model Performance

ENHANCE achieved AUC 0.696 (95% CI: 0.691–0.701), a statistically significant improvement of 0.020 over

HOSPITAL (p<0.001), while maintaining clinical interpretability (Figure 2; component-level performance in

Supplementary Table S23). The four-tier risk stratification achieved 4.2-fold discrimination (44.8% vs 10.8%

readmission rates; Supplementary Table S25), identifying 29,558 high-risk patients compared to HOSPITAL’s

7,554—a 391% improvement in high-risk detection.

ML-ENHANCE achieved substantially superior discrimination (AUC 0.752; 95% CI: 0.747–0.757), rep-

resenting 0.076 improvement over HOSPITAL and capturing 73.7% of the improvement gap inaccessible to
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interpretable methods. The ensemble demonstrated acceptable generalization (training AUC 0.763, valida-

tion AUC 0.752). Feature importance analysis confirmed prior admissions as the dominant predictor, followed

by laboratory scores and baseline HOSPITAL components (Supplementary Table S17). Bootstrap analysis

established statistically significant superiority over both HOSPITAL (difference 0.076; 95% CI: 0.071–0.081)

and ENHANCE (difference 0.056; 95% CI: 0.051–0.061; Table 3; Supplementary Table S24).
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Figure 2: Model performance comparison showing AUC values for HOSPITAL (0.676), ENHANCE (0.696),
and ML-ENHANCE (0.752).

Table 3: Area under the ROC curve and Youden’s J statistic with 95% bootstrap confidence intervals.

Model AUC [95% CI] Youden’s J [95% CI] J Threshold

HOSPITAL 0.676 [0.673, 0.680] 0.259 [0.253, 0.264] 3.0
ENHANCE 0.696 [0.693, 0.700] 0.291 [0.285, 0.296] 7.0
ML-ENHANCE 0.753 [0.749, 0.756] 0.369 [0.364, 0.376] 0.22

ML-ENHANCE demonstrated substantially superior risk stratification (Figure 3), with patients in the

lowest decile experiencing 3.7% readmission rate versus 56.4% in the highest—a 15.2-fold range. When

grouped into quartiles, ML-ENHANCE achieved 7.5-fold discrimination compared to 4.2-fold for ENHANCE.

3.3 Temporal Validation

All models demonstrated excellent temporal stability. Temporal validation showed HOSPITAL testing AUC

0.676 (difference from training: −0.001), ENHANCE 0.687 (+0.002), and ML-ENHANCE 0.752 (−0.011).

Both ENHANCE (Brier score 0.1522) and ML-ENHANCE (0.1487) achieved excellent calibration (Supple-

mentary Figure S1). Cost scenario details are presented in Supplementary Table S1.

Additional validation analyses are presented in the Supplementary Appendix, including ROC curve com-

parisons (Supplementary Figure S2), ENHANCE risk stratification details (Supplementary Figure S3), tem-

poral stability analysis (Supplementary Figure S4), subgroup performance (Supplementary Figure S5), com-

prehensive calibration analysis (Supplementary Figure S6), and the comprehensive ENHANCE score analysis

(Supplementary Figure S15).
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Figure 3: ML-ENHANCE risk stratification. Left panel: Readmission rates by ML-ENHANCE probability
decile, demonstrating 15.2-fold discrimination (3.7% to 56.4%) across the risk spectrum. Right panel: Direct
comparison of risk stratification performance showing ML-ENHANCE achieves 7.5-fold discrimination versus
4.2-fold for ENHANCE, when patients are grouped into equivalent quartile-based risk categories.

3.4 Cost-Based Threshold Optimization

Decision-theoretic analysis revealed ML-ENHANCE’s discrimination advantage translates to substantial ben-

efits across all cost scenarios (Figure 4). At the policy-relevant 5:1 cost ratio ($3,260 interventions), ML-

ENHANCE and ENHANCE achieved identical sensitivity (76.9%) but ML-ENHANCE demonstrated 8.3

percentage points higher specificity (58.9% vs 50.6%), translating to approximately 7,400 fewer unnecessary

interventions annually while maintaining equivalent readmission capture. ML-ENHANCE achieved 12.9%

expected cost reduction versus 2.8% for ENHANCE—a 4.6-fold advantage.

Cost-optimal thresholds diverged substantially from Youden’s J recommendations. For ENHANCE,

Youden’s J threshold of 7.0 (sensitivity 63.1%) was dominated by the cost-optimal threshold of 4.1 (sensitiv-

ity 76.9%), representing 13.8 percentage points sacrificed by cost-agnostic selection. At high cost ratios (2:1),

ML-ENHANCE identified 39.9% of readmissions versus HOSPITAL’s 22.2% while maintaining comparable

specificity. At low cost ratios (10:1), HOSPITAL collapsed to near-universal screening (99.5% sensitivity,

1.4% specificity) while ML-ENHANCE maintained meaningful stratification (92.8% sensitivity, 30.8% speci-

ficity). Complete threshold optimization results are presented in Supplementary Table S2.

Model-specific threshold optimization analyses for HOSPITAL (Supplementary Figure S16), ENHANCE

(Supplementary Figure S17), and ML-ENHANCE (Supplementary Figure S18) provide detailed cost curves

and operating characteristics for each model.

Table 4 presents projected economic impact for a high-volume U.S. institution (50,000 annual discharges)

at the 5:1 cost ratio. ML-ENHANCE achieves $69.3 million annual savings (13.1% reduction) versus $14.7
million for ENHANCE (2.8%)—a 4.7-fold differential. Critically, ML-ENHANCE identifies 224 additional

preventable readmissions compared to HOSPITAL while simultaneously reducing false positives by 3,069

patients, demonstrating that improved discrimination benefits both sensitivity and specificity. The expected

cost per patient decreases from $10,612 (HOSPITAL) to $9,226 (ML-ENHANCE), translating to $1,386
savings per discharge.
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Figure 4: Cost-based threshold optimization comparing HOSPITAL, ENHANCE, and ML-ENHANCE with
95% confidence intervals. Panels A–C: Expected cost curves for cost ratios 2:1, 5:1, and 10:1; stars mark
optimal operating points. Panel D: Sensitivity at cost-optimal thresholds. Panel E: Specificity values. Panel
F: Expected cost per patient.

Table 4: Projected annual economic impact for a high-volume U.S. institution (50,000 discharges/year, 5:1
cost ratio). Expected costs incorporate both intervention expenditures and readmission costs under each
model’s optimal threshold.

Metric HOSPITAL ENHANCE ML-ENHANCE ∆ vs HOSP

Readmissions identified (TP) 7,817 8,036 8,041 +219 / +224
Patients flagged unnecessarily (FP) 19,340 19,542 16,271 +202 / −3,069
Readmissions missed (FN) 2,633 2,414 2,409 −219 / −224

Expected cost per patient $10,612 $10,318 $9,226 −$294 / −$1,386
Annual institutional cost $530.6M $515.9M $461.3M —

Annual savings vs HOSPITAL — $14.7M $69.3M —
Percent reduction — 2.8% 13.1% —
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In Israeli healthcare using the day-denominated framework (25,000 discharges, 3:1 ratio), ML-ENHANCE

generates 1,812 additional net bed-days annually (equivalent to 5.0 beds of continuous capacity) versus 418

for ENHANCE (1.1 beds), achieving 4.3-fold greater capacity impact (Supplementary Table S3). This

advantage persisted across all evaluated cost ratios from 0.5:1 through 20:1, spanning a 40-fold range of

implied intervention costs.

4 Discussion

This analysis of 113,312 patients demonstrates that machine learning substantially outperforms interpretable

clinical scores for readmission prediction, and that this discrimination advantage translates directly to clini-

cally meaningful benefits when evaluated through decision-theoretic threshold optimization. ML-ENHANCE

achieved AUC 0.752, representing 0.076 improvement over HOSPITAL and 0.056 over ENHANCE. Risk

stratification analysis revealed 7.5-fold discrimination across quartiles compared to 4.2-fold for ENHANCE

and 2.8-fold for HOSPITAL, nearly tripling the discrimination range of the original score.

The key methodological contribution lies in demonstrating that traditional AUC comparisons understate

practical value. At the policy-relevant 5:1 cost ratio, ML-ENHANCE’s advantage manifests as $69.3 million

in projected annual savings for high-volume U.S. institutions versus $14.7 million for ENHANCE, while

in Israeli healthcare settings ML-ENHANCE generates 1,812 additional bed-days annually versus 418 for

ENHANCE. This 4–5 fold differential persisted across all evaluated cost ratios from 0.5:1 through 20:1,

indicating that findings reflect genuine discriminative superiority rather than artifacts of particular cost

assumptions.

The interpretable ENHANCE score captures only 26.3% of the achievable improvement gap, leaving

73.7% accessible only through machine learning. While ENHANCE provides a transparent alternative for

bedside applications, ML-ENHANCE is appropriate for automated population health platforms where max-

imum efficiency is paramount. Both models demonstrated excellent temporal stability across the seven-year

study period (ENHANCE: +0.002; ML-ENHANCE: −0.011 AUC change), supporting robust generalizability

despite evolving clinical practices.

The cost-based framework addresses a critical limitation in prediction model validation: the gap between

discrimination metrics and actionable decision support. The substantial divergence between Youden’s J and

cost-optimal thresholds - 13.8 percentage points of sensitivity for ENHANCE - demonstrates that statistically

optimal choices may substantially underperform clinically optimal choices when error costs are asymmetric.

The framework’s applicability across U.S. fee-for-service and Israeli capitation-based systems demonstrates

generalizability, with the natural emergence of a 3:1 cost ratio from Israeli healthcare structure providing

validation independent of currency-denominated assumptions.

Our baseline HOSPITAL performance (AUC 0.676) aligns with published reports (0.65–0.71), confirming

implementation validity [4]. ML-ENHANCE’s improvement falls at the upper end of gains reported for

machine learning approaches (0.05–0.10). Previous studies demonstrating discrimination improvements have

faced criticism for presenting abstract AUC gains without practical value; our cost-based framework addresses

this by translating differences into concrete operating characteristics and economic projections, providing

the evidence base for reconsidering the interpretability-performance trade-off.

The choice between models represents a deliberate trade-off. ENHANCE offers interpretable risk assess-

ment with components automatically extractable from electronic health records and an additive structure en-

abling manual calculation in resource-limited settings. ML-ENHANCE is suited for automated applications
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including EHR-integrated flagging, care management enrollment, and post-discharge resource allocation.

Feature importance analysis reveals that prior admissions, laboratory abnormalities, and HOSPITAL com-

ponents drive ML-ENHANCE predictions - consistent with clinical intuition, potentially facilitating clinician

trust despite algorithmic complexity.

Several limitations warrant consideration. This single-center study may limit generalizability; external

validation across diverse settings is essential, particularly for ML-ENHANCE where overfitting concerns are

greater. The retrospective design limits assessment of prospective implementation challenges. Cost parame-

ters may vary across institutions; while sensitivity analysis across a 40-fold range of ratios addresses relative

cost uncertainty, absolute projections should be interpreted as illustrative. Future research should examine

condition-specific versions and integration with real-time monitoring or social determinants screening.

In summary, ML-ENHANCE represents a substantial advancement in readmission prediction, demon-

strating through cost-based threshold optimization that machine learning’s discrimination improvements

translate directly to economically significant benefits. At the 5:1 cost ratio, ML-ENHANCE achieves 13.1%

cost reduction compared to 2.8% for ENHANCE - a 4–5 fold advantage. Healthcare systems should con-

sider stratified deployment: ML-ENHANCE for automated risk stratification where maximum efficiency is

paramount, and ENHANCE for clinical contexts requiring interpretable risk communication.
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A Supplementary Tables and Figures

Table S1: Cost ratio scenarios with corresponding intervention costs and clinical examples. Cost ratios
represent the relative cost of a missed readmission (CFN) versus an unnecessary intervention (CFP). U.S.
costs assume readmission cost of $16,300; Israeli costs expressed in hospitalization days.

Cost Ratio U.S. Cost Israeli (days) Representative Program Setting

0.5:1 $32,600 6:1 days Short-term SNF placement Post-surgical
1:1 $16,300 3:3 days Intensive home health High-acuity HF
2:1 $8,150 3:1.5 days Comprehensive transitional care Multi-morbid
3:1 $5,433 3:1 days Care transitions intervention Israeli default
5:1 $3,260 5:1 days Structured nurse follow-up Standard post-DC
10:1 $1,630 3:0.3 days Pharmacist medication review Polypharmacy
20:1 $815 3:0.15 days Automated calls + education Population-level

Table S2: Optimal thresholds and operating characteristics by cost ratio with 95% confidence intervals.
Thresholds minimize expected cost per patient. ML-ENHANCE thresholds represent predicted probabilities
(0–1 scale). ∆Cost calculated relative to HOSPITAL.

Ratio Model Threshold [95% CI] Sensitivity [95% CI] Specificity [95% CI] ∆Cost

2:1
HOSPITAL 5.0 [6.0, 6.0] 22.2% [21.7, 22.7] 91.7% [91.5, 91.9] —
ENHANCE 11.1 [11.0, 12.0] 28.1% [27.6, 35.3] 90.1% [86.4, 90.3] −3.2%
ML-ENHANCE 0.34 [0.31, 0.35] 39.9% [38.0, 45.5] 89.0% [86.1, 90.0] −13.4%

3:1
HOSPITAL 3.0 [4.0, 4.0] 54.0% [53.4, 54.6] 71.7% [71.5, 72.1] —
ENHANCE 7.1 [8.0, 9.0] 54.9% [48.3, 55.6] 73.1% [72.9, 78.2] −3.3%
ML-ENHANCE 0.26 [0.25, 0.27] 58.5% [54.8, 61.2] 77.3% [75.4, 80.2] −14.1%

5:1
HOSPITAL 2.0 [3.0, 3.0] 74.8% [74.3, 75.3] 51.1% [50.8, 51.4] —
ENHANCE 4.1 [5.0, 5.0] 76.9% [76.4, 77.4] 50.6% [50.2, 50.9] −2.8%
ML-ENHANCE 0.18 [0.16, 0.19] 76.9% [74.7, 82.1] 58.9% [52.1, 62.1] −12.9%

10:1
HOSPITAL 0.1 [0.0, 2.0] 99.5% [88.8, 100] 1.4% [0.0, 29.8] —
ENHANCE 1.1 [2.0, 3.0] 95.0% [89.8, 95.3] 16.5% [16.3, 30.2] −3.2%
ML-ENHANCE 0.11 [0.10, 0.12] 92.8% [90.9, 93.7] 30.8% [28.3, 36.4] −11.7%
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Figure S1: Youden’s J statistic and sensitivity-specificity analysis with 95% confidence intervals. (A) ROC
curves with shaded 95% CI bands; Youden’s J optimal points marked with error bars. (B) Youden’s J as a
function of normalized threshold, showing peak values: ML-ENHANCE (J=0.369), ENHANCE (J=0.291),
HOSPITAL (J=0.259). (C) Sensitivity-specificity tradeoff with 95% CI bands. (D) Sensitivity and specificity
vs. ENHANCE threshold. (E) Sensitivity at cost-optimal thresholds vs. Youden’s J (dotted lines). (F)
Summary table with 95% CIs.

Table S3: Projected annual capacity impact for a large Israeli medical center (25,000 discharges/year, 3:1
day-based cost ratio). Costs expressed in hospitalization days.

Metric HOSPITAL ENHANCE ML-ENHANCE ∆ vs HOSP

Readmissions identified (TP) 2,822 2,869 3,057 +47 / +235
Unnecessary interventions (FP) 5,596 5,319 4,489 −277 / −1,107
Readmissions missed (FN) 2,403 2,356 2,168 −47 / −235

Days saved (TP × 3) 8,466 8,607 9,171 +141 / +705
Days spent (FP × 1) 5,596 5,319 4,489 −277 / −1,107
Net days saved 2,870 3,288 4,682 —

Additional vs HOSPITAL — +418 days +1,812 days —
Equivalent beds (continuous) — +1.1 beds +5.0 beds —
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B Detailed Background and Rationale

Hospital readmissions represent one of the most significant quality and cost challenges in modern healthcare

systems. In the United States alone, 15–20% of inpatients are readmitted within a month, generating more

than $40 billion in costs that are considered potentially preventable each year [1, 2]. The Centers for Medicare

& Medicaid Services links hospital reimbursement to excess readmissions through the Hospital Readmissions

Reduction Program, further intensifying the demand for accurate prediction tools [3].

The HOSPITAL score, derived from seven routinely collected variables, represents the most widely vali-

dated clinical instrument for 30-day readmission prediction [4]. Across multiple cohorts, it achieves an area

under the receiver operating characteristic curve (AUC) of approximately 0.65–0.70, demonstrating moderate

discrimination. However, several limitations constrain its clinical impact. The score’s modest performance

leaves substantial residual risk unexplained, with readmission rates ranging only 2-fold across its three risk

categories. This limited granularity provides insufficient precision for identifying patients at the extremes

of risk where resource-intensive interventions would be most cost-effective. Additionally, the original HOS-

PITAL score was developed over a decade ago, before the widespread adoption of comprehensive electronic

health records, and therefore overlooks readily available clinical information that could enhance prediction

accuracy.

Contemporary clinical data systems routinely capture detailed information that was not systematically

available during the HOSPITAL score’s development, including comprehensive laboratory panels with op-

timized reference ranges, granular comorbidity coding enabling interaction analysis, temporal admission

patterns, and emergency department care pathways. These data sources represent untapped opportuni-

ties for improving readmission prediction while maintaining the clinical interpretability essential for bedside

decision-making.

Machine learning (ML) approaches have demonstrated the potential for superior discrimination by lever-

aging hundreds of variables, with ensemble models achieving 0.05–0.10 AUC improvements over traditional

scores in recent evaluations [5, 6]. However, these gains come at the expense of clinical interpretability, cre-

ating “black box” models that resist bedside implementation and clinical trust. Furthermore, the practical

benefits of marginal AUC improvements remain unclear without demonstrating substantial improvements in

risk stratification capabilities.

A pragmatic solution involves developing complementary models that balance clinical utility with pre-

dictive performance. An enhanced clinical score should extract additional predictive signal from routine

data while preserving interpretability and implementation feasibility. Simultaneously, a high-performing ML

model using the same feature set can establish the theoretical performance ceiling, quantifying the maximum

achievable improvement and providing context for the clinical score’s performance.

C Detailed Methodology

Reporting follows the TRIPOD statement for transparent reporting of prognostic model studies [8]. The

study population included all adult patients (≥18 years) with inpatient admissions to internal medicine

departments between January 1, 2017 and December 31, 2023. Exclusion criteria, applied sequentially, were:

(1) non-internal medicine admissions, (2) missing discharge dates, (3) length of stay ≤1 day or >365 days,

and (4) missing essential demographic data.

Temporal validation employed a chronological 70/30 split to ensure robust evaluation across different time

14



periods and evolving clinical practices. The development period (2017–2020) captured early healthcare sys-

tem practices and included the transition period around COVID-19, while the validation period (2021–2023)

represented more recent clinical practices and post-pandemic care patterns. This temporal split strategy

provides stronger evidence of model generalizability compared to random splitting, as it tests performance

across genuine temporal changes in patient populations and clinical practices.

Data extraction captured demographics, admission characteristics, comorbidities (using ICD-10-CM

codes with established mapping algorithms [9]), laboratory values (most recent before discharge), vital

signs, medications, procedures, and readmission outcomes. All data elements were routinely collected during

standard clinical care.

The HOSPITAL score was calculated using the original seven components: hemoglobin at discharge <12

g/dL (1 point), oncology service discharge adapted as history of malignancy (1 point), sodium level <135

mEq/L (1 point), procedure during stay (1 point), emergency department admission (1 point), prior year

admissions 0–1/2–5/>5 (0/2/5 points), admission length ≥5 days (2 points), and low albumin <3.5 g/dL (1

point). Risk categories were defined as Low (0–4 points), Intermediate (5–6 points), and High (≥7 points).

Missing data patterns were systematically evaluated across all variables. Laboratory values were imputed

using clinically normal values when tests were not performed: hemoglobin 13 g/dL, sodium 138 mEq/L,

albumin 4.0 g/dL, assuming clinical stability. Emergency department admission indicators were imputed

as False when missing, and procedure counts were imputed as zero. Physiologically implausible values

were excluded: length of stay >365 days or ≤0.1 days, representing data entry errors or non-meaningful

admissions.

Feature engineering followed a systematic five-stage process: (1) domain-specific analysis across nine

analytical domains, (2) evidence-based selection using quantifiable evidence across domains, (3) threshold

optimization using Youden’s J statistic, (4) point assignment using L1 regularization, and (5) integration

and validation with temporal holdout testing. The 16 components identified through domain analysis were

systematically evaluated, with final point assignments optimized through sparse regularization to maximize

discriminative performance while maintaining clinical interpretability.

Continuous variables were described using means and standard deviations or medians and interquartile

ranges based on distribution normality assessed by the Shapiro-Wilk test. Categorical variables were pre-

sented as frequencies and percentages. Between-group comparisons used Student’s t-test or Mann-Whitney

U test for continuous variables and chi-square test or Fisher’s exact test for categorical variables. Model cal-

ibration was evaluated using calibration plots with 10 equally-sized groups. Risk stratification was assessed

by comparing readmission rates across score-defined risk categories. Bootstrap validation with 1000 samples

was used to assess stability of feature selection and point assignments.

D Supplementary Analysis by Research Domain

This appendix provides detailed results from each of the nine analytical domains that informed the develop-

ment of the ENHANCE score. For each domain, we present detailed methodologies, key findings, and their

direct contributions to the final scoring system.

D.1 Domain 1: Comorbidity Analysis

Research Question How does the presence of multiple comorbidities affect readmission risk compared to

single conditions? Is there a specific combination that significantly increases risk?
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Methodology We analyzed nine major comorbidity categories: chronic kidney disease (CKD), malignancy,

congestive heart failure (CHF), hypertension (HTN), diabetes mellitus (DM), chronic obstructive pulmonary

disease (COPD), cerebrovascular accident (CVA), ischemic heart disease (IHD), and dyslipidemia. For each

condition, we calculated prevalence, readmission rates, and odds ratios with 95% confidence intervals. We

analyzed all possible pairs and triplets of the most common conditions, requiring a minimum of 20 patients

per combination to ensure statistical reliability.

Individual Comorbidity Effects: Our analysis of individual comorbidities revealed substantial variation

in their association with readmission risk. As shown in Table S4, CKD demonstrated the strongest association

with readmission (OR 1.68, 95% CI 1.60–1.76), affecting 8.2% of patients with a readmission rate of 29.8%

compared to 20.1% in those without CKD. History of malignancy showed similarly strong association (OR

1.66, 95% CI 1.58–1.74), while CHF ranked third (OR 1.57, 95% CI 1.49–1.66). All major comorbidities

except dyslipidemia showed statistically significant associations with readmission (p < 0.001). Notably,

dyslipidemia showed minimal association with readmission risk (OR 1.02, 95% CI 0.99–1.05, p = 0.199),

despite its high prevalence of 38.6%.

Table S4: Individual Comorbidity Effects on Readmission Risk

Condition Prevalence (%) With Condition Without Condition Rate Difference Odds Ratio 95% CI

CKD 8.2 0.298 0.201 +0.096 1.68 1.60–1.76
MALIGNANCY 7.7 0.296 0.202 +0.094 1.66 1.58–1.74
CHF 5.9 0.287 0.204 +0.083 1.57 1.49–1.66
DM 29.3 0.243 0.195 +0.048 1.32 1.28–1.37
COPD 6.2 0.254 0.206 +0.048 1.31 1.24–1.38
HTN 51.0 0.227 0.190 +0.037 1.25 1.22–1.29
CVA 2.5 0.242 0.208 +0.034 1.22 1.12–1.33
IHD 17.8 0.236 0.203 +0.033 1.21 1.17–1.25
DYSLIP 38.6 0.211 0.208 +0.003 1.02 0.99–1.05

Comorbidity Burden: The analysis of comorbidity burden revealed a strong dose-response relationship,

as detailed in Table S5. Readmission rates increased monotonically from 17.00% in patients with no co-

morbidities to 50.00% in the two patients with eight comorbidities, representing a 2.9-fold increase. The

Spearman correlation coefficient of 0.075 (p < 0.001) confirmed this significant positive trend. The majority

of patients (28.5%) had no comorbidities, while 21.1% had one condition and 21.7% had two conditions.

Table S5: Readmission Rates by Comorbidity Burden

Number of Comorbidities Total Patients Readmission Rate Rate (%)

0 32,314 0.170 17.00
1 23,893 0.207 20.72
2 24,578 0.212 21.19
3 19,051 0.227 22.72
4 9,227 0.257 25.66
5 3,293 0.310 30.97
6 825 0.333 33.33
7 129 0.388 38.76
8 2 0.500 50.00
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High-Risk Combinations: Analysis of comorbidity combinations revealed significant synergistic effects

beyond simple additive risk. Table S6 presents the 56 combinations identified in our cohort. The combination

of CKD and CVA demonstrated the highest relative risk at 1.75, affecting 396 patients with a readmission

rate of 36.6%, substantially higher than would be expected from either condition alone. The CHF and COPD

combination ranked second with relative risk 1.69 and readmission rate of 35.3% in 858 patients. Among

triplet combinations, the presence of HTN, CKD, and malignancy together resulted in a 32.7% readmission

rate (RR 1.57), affecting 684 patients.

Weighted Comorbidity Index Development: To improve upon simple comorbidity counting, we de-

veloped a weighted scoring system based on the natural logarithm of odds ratios. Each condition received a

weight proportional to ln(OR), with CKD receiving the highest weight (0.520), malignancy (0.506), and CHF

(0.453), while dyslipidemia received the lowest weight (0.019). The weighted comorbidity score demonstrated

superior discrimination compared to simple counting (AUC 0.568 vs. 0.552, improvement of 0.016).

Figure S7 provides a comprehensive visualization of these findings, including forest plots of individual

comorbidity effects, the distribution of comorbidity burden across the population, and ROC curves comparing

simple comorbidity counts versus weighted scoring approaches. The weighted comorbidity score achieved an

AUC of 0.568 compared to 0.552 for simple counting, supporting the value of condition-specific weighting.

Contribution to ENHANCE Score Based on these findings and sparse logistic regression with L1

regularization (C=1.5), we incorporated the following comorbidity components into the ENHANCE score:

chronic kidney disease received 0 points (despite its significant OR, its effect was captured through the

CKD+CVA interaction), history of malignancy received 1 point (based on OR 1.66), congestive heart failure

received 0 points despite its significant OR, and the CKD + CVA interaction received 2 points based on its

strong synergistic effect (RR 1.75).

D.2 Domain 2: Laboratory Values Analysis

Research Question Which laboratory abnormalities are most strongly associated with readmission when

analyzed individually rather than as part of the HOSPITAL score?

Methodology We analyzed 27 laboratory parameters using receiver operating characteristic (ROC) curve

analysis and Youden’s J statistic to identify optimal thresholds. For each parameter, we calculated AUC,

mean difference between readmitted and non-readmitted patients, Cohen’s d effect size, and p-values from

Mann-Whitney U and Kolmogorov-Smirnov tests.

Individual Laboratory Predictors: Table S7 presents the laboratory parameters ranked by their indi-

vidual predictive power for readmission. Hemoglobin and albumin emerged as the strongest predictors with

identical AUC values of 0.637. The analysis revealed distinct patterns: lower values of hemoglobin (mean

difference -1.06 g/dL), albumin (-0.27 g/dL), and calcium (-0.20 mmol/L) were associated with increased

readmission risk, while elevated urea (+12.79 mg/dL), GGT (+36.79 U/L), and ALP (+29.19 U/L) indi-

cated higher risk. All major associations were highly statistically significant (p < 0.001), with only platelet

count showing no significant association (p = 0.723).
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Table S6: High-Risk Comorbidity Combinations (sorted by readmission rate)

Combination Type Count Readmission Rate Rate vs Baseline Relative Risk

CKD + CVA Pair 396 0.366 +0.157 1.75
CHF + COPD Pair 858 0.353 +0.144 1.69
MALIGNANCY + CVA Pair 226 0.341 +0.132 1.63
COPD + CKD Pair 742 0.333 +0.124 1.59
HTN + CKD + MALIGNANCY Triplet 684 0.327 +0.118 1.57
DM + IHD + CKD Triplet 2,052 0.323 +0.114 1.55
DYSLIP + CKD + MALIGNANCY Triplet 421 0.323 +0.114 1.55
IHD + CKD + MALIGNANCY Triplet 285 0.319 +0.110 1.53
CHF + MALIGNANCY Pair 540 0.317 +0.108 1.51
HTN + IHD + CKD Triplet 2,984 0.315 +0.106 1.51
CHF + CKD Pair 1,901 0.315 +0.105 1.50
CKD + MALIGNANCY Pair 852 0.315 +0.105 1.50
DYSLIP + IHD + CKD Triplet 2,386 0.314 +0.105 1.50
DYSLIP + DM + CKD Triplet 3,004 0.313 +0.104 1.50
CKD + IHD Pair 3,515 0.312 +0.103 1.49
HTN + DM + CKD Triplet 4,163 0.311 +0.102 1.49
HTN + DYSLIP + CKD Triplet 4,429 0.308 +0.098 1.47
CKD + DM Pair 4,815 0.307 +0.098 1.47
DM + IHD + MALIGNANCY Triplet 573 0.305 +0.096 1.46
CKD + HTN Pair 7,694 0.304 +0.095 1.45
CHF + DM Pair 3,377 0.303 +0.094 1.45
DM + MALIGNANCY Pair 2,367 0.302 +0.093 1.44
DM + CKD + MALIGNANCY Triplet 372 0.301 +0.092 1.44
CKD + DYSLIP Pair 5,021 0.301 +0.092 1.44
CHF + IHD Pair 2,874 0.300 +0.091 1.43
HTN + DM + MALIGNANCY Triplet 1,790 0.298 +0.089 1.42
DYSLIP + DM + MALIGNANCY Triplet 1,223 0.296 +0.087 1.42
DYSLIP + IHD + MALIGNANCY Triplet 809 0.295 +0.086 1.41
CHF + HTN Pair 5,141 0.295 +0.086 1.41
HTN + IHD + MALIGNANCY Triplet 1,014 0.292 +0.083 1.40
CHF + DYSLIP Pair 3,739 0.292 +0.082 1.39
MALIGNANCY + HTN Pair 4,715 0.291 +0.081 1.39
COPD + IHD Pair 1,838 0.288 +0.079 1.38
COPD + DM Pair 2,499 0.286 +0.077 1.37
CHF + CVA Pair 319 0.285 +0.076 1.36
MALIGNANCY + IHD Pair 1,333 0.285 +0.076 1.36
HTN + DYSLIP + MALIGNANCY Triplet 2,334 0.285 +0.076 1.36
COPD + CVA Pair 204 0.284 +0.075 1.36
MALIGNANCY + DYSLIP Pair 3,087 0.284 +0.075 1.36
IHD + CVA Pair 851 0.275 +0.066 1.32
COPD + HTN Pair 4,332 0.269 +0.060 1.29
DM + CVA Pair 1,306 0.262 +0.053 1.25
COPD + DYSLIP Pair 3,411 0.260 +0.051 1.25
HTN + DM + IHD Triplet 7,662 0.258 +0.049 1.23
COPD + MALIGNANCY Pair 382 0.257 +0.047 1.23
DM + IHD Pair 9,618 0.255 +0.046 1.22
DYSLIP + DM + IHD Triplet 6,741 0.254 +0.045 1.21
HTN + CVA Pair 2,148 0.253 +0.044 1.21
DM + HTN Pair 24,714 0.247 +0.038 1.18
HTN + DYSLIP + DM Triplet 15,041 0.246 +0.037 1.18
HTN + IHD Pair 15,021 0.243 +0.034 1.16
DM + DYSLIP Pair 18,977 0.238 +0.029 1.14
HTN + DYSLIP + IHD Triplet 10,398 0.235 +0.026 1.12
DYSLIP + CVA Pair 1,639 0.230 +0.021 1.10
IHD + DYSLIP Pair 13,132 0.228 +0.019 1.09
HTN + DYSLIP Pair 31,579 0.221 +0.012 1.06
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Table S7: Laboratory Values as Readmission Predictors (sorted by AUC)

Laboratory AUC Mean Difference Cohen’s d P-Value Risk Direction

HB 0.637 -1.06 -0.452 <0.001 lower
ALB 0.637 -0.27 -0.488 <0.001 lower
CA 0.589 -0.20 -0.302 <0.001 lower
UREA 0.586 +12.79 0.327 <0.001 higher
GGT 0.585 +36.79 0.228 <0.001 higher
ALP 0.583 +29.19 0.265 <0.001 higher
LDH 0.571 +43.88 0.210 <0.001 higher
PULSE 0.560 +2.97 0.214 <0.001 higher
CR 0.549 +0.22 0.188 <0.001 higher
CL 0.543 -0.66 -0.132 <0.001 lower
WEIGHT 0.537 -2.32 -0.120 <0.001 lower
BILDIR 0.537 +0.13 0.133 <0.001 higher
DBP 0.536 -1.23 -0.099 <0.001 lower
NA 0.533 -0.40 -0.098 <0.001 lower
SBP 0.527 -1.89 -0.088 <0.001 lower
GLU 0.527 +5.08 0.095 <0.001 higher
WBC 0.522 +0.43 0.062 <0.001 higher
O2SAT 0.521 +0.20 0.007 <0.001 lower
K 0.511 -0.01 -0.024 <0.001 lower
HEIGHT 0.510 -0.42 -0.033 <0.001 lower
RR 0.510 +0.10 0.012 0.003 higher
AST 0.510 +2.40 0.036 <0.001 higher
BILTOT 0.509 +0.10 0.103 <0.001 higher
ALT 0.508 +1.24 0.016 <0.001 lower
TEMP 0.507 +0.01 0.012 0.001 higher
P 0.506 +0.04 0.052 0.007 higher
PLT 0.501 +2.20 0.020 0.723 lower
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HOSPITAL Score Threshold Evaluation: We compared the performance of HOSPITAL score thresh-

olds against optimal thresholds derived from our data. For hemoglobin, the HOSPITAL threshold (below

12 g/dL) identified 60,259 patients (53.2%) as abnormal, with readmission rates of 27.2% in abnormal ver-

sus 13.8% in normal patients (rate difference 13.5%). However, the optimal threshold identified through

Youden’s J statistic showed inferior performance (improvement = -0.926). Similarly, for sodium, the HOS-

PITAL threshold (below 135 mmol/L) affected 11,375 patients (10.0%) with readmission rates of 28.7%

versus 20.0% (rate difference 8.6%), while the optimal threshold showed improvement = -0.158.

Laboratory Abnormality Burden: Analysis of laboratory abnormality burden revealed a strong positive

correlation with readmission risk (Spearman correlation 0.162, p < 0.001). Readmission rates increased from

13.94% in patients with 2 laboratory abnormalities to 34.20% in those with 6 abnormalities, representing a

2.5-fold increase across the abnormality burden spectrum.

Enhanced Laboratory Score Development: Using logistic regression with the top eight laboratory

predictors (HB, ALB, CA, UREA, GGT, ALP, LDH, PULSE), we developed an enhanced laboratory score

from 107,727 complete observations, achieving an AUC of 0.678. The model coefficients revealed albu-

min (-0.315) and hemoglobin (-0.227) as the strongest negative predictors, while urea (+0.176) showed the

strongest positive association with readmission risk. Pulse rate (+0.129), LDH (+0.099), ALP (+0.054),

GGT (+0.053), and calcium (+0.052) also contributed significantly to the model.

Figure S8 illustrates these findings, including the distribution of laboratory values by outcome, the per-

formance of HOSPITAL thresholds versus optimized cutoffs, and the enhanced laboratory score distribution.

Contribution to ENHANCE Score Based on the sparse logistic regression analysis, the following

laboratory components were incorporated into the ENHANCE score: severe hypoalbuminemia (<3.0 g/dL)

received 2 points, moderate anemia (<10.0 g/dL) received 2 points, and kidney dysfunction marker (urea

>60 mg/dL) received 2 points. These optimized thresholds provide superior discrimination compared to the

conventional HOSPITAL thresholds.

D.3 Domain 3: Emergency Department Admission Patterns

Research Question Do patients who came through the emergency department have different readmission

patterns or lengths of stay compared to elective admissions?

Methodology We compared 109,252 ED admissions (96.4%) with 4,060 elective admissions (3.6%) on

baseline characteristics, readmission rates, and length of stay patterns. We analyzed interactions between

ED admission and comorbidities using stratified analysis to identify synergistic effects.

ED vs. Elective Admission Characteristics: Table S8 summarizes the key differences between ED

and elective admissions. Despite the overwhelming predominance of ED admissions in our cohort, we found

minimal difference in readmission rates between ED (20.9%) and elective (20.6%) admissions (p=0.654,

OR=1.02). However, ED patients demonstrated significantly different characteristics including older age

(70.11 vs. 65.88 years, p<0.001), lower proportion of males (52.44% vs. 57.91%, p<0.001), higher comorbid-

ity burden (1.67 vs. 1.60, p<0.001), and substantially higher HOSPITAL scores (3.12 vs. 1.95, p<0.001).

ED patients also had longer median length of stay (1.71 vs. 1.14 days, p<0.001).
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Table S8: Comparison of ED vs. Elective Admission Characteristics

Characteristic ED Elective P-Value

Age (mean years) 70.11 65.88 <0.001
Male (%) 52.44 57.91 <0.001
Comorbidities (mean) 1.67 1.60 <0.001
HOSPITAL Score (mean) 3.12 1.95 <0.001
Length of Stay (median days) 1.71 1.14 <0.001

Length of Stay Distribution: Analysis of length of stay patterns revealed significant differences between

admission types (Mann-Whitney U test p<0.001). ED patients demonstrated longer stays across most

categories, with 31.3% staying ≤1 day compared to 36.4% of elective patients. Conversely, ED patients had

higher proportions in longer stay categories: 19.0% vs. 10.6% for 4–7 days and 7.4% vs. 4.8% for 8–30 days.

The >30 days category showed similar proportions (0.6% each).

ED × Comorbidity Interactions: Analysis revealed significant interactions between ED admission and

specific comorbidities, as shown in Table S9. The CHF × ED interaction showed the strongest effect,

with readmission rates of 29.2% for ED patients with CHF versus 19.7% for elective patients with CHF,

representing an additional 9.8 percentage point increase beyond the sum of individual effects. Similar but

smaller interaction effects were observed for CVA (+5.7 percentage points) and COPD (+5.7 percentage

points). Notably, the malignancy interaction showed a negative effect (-8.3 percentage points), with elective

patients having higher readmission rates (35.7%) than ED patients (29.2%) when malignancy was present.

Table S9: ED × Comorbidity Interaction Effects

Comorbidity ED with ED without Elective with Elective without Interaction Effect N ED with

CHF 0.292 0.204 0.197 0.207 +0.098 6,412
CVA 0.244 0.208 0.185 0.207 +0.057 2,781
COPD 0.255 0.206 0.199 0.206 +0.057 6,871
HTN 0.228 0.189 0.207 0.205 +0.036 55,942
DM 0.244 0.195 0.220 0.201 +0.030 32,043
IHD 0.237 0.203 0.213 0.205 +0.025 19,483
DYSLIP 0.212 0.208 0.196 0.211 +0.019 42,303
CKD 0.298 0.201 0.286 0.197 +0.008 8,933
MALIGNANCY 0.292 0.203 0.357 0.185 -0.083 8,182

ED-Specific Model Development: To assess whether ED patients require different predictive approaches,

we developed separate models for ED (n=109,252) and elective (n=4,060) patients using six key features:

age, HOSPITAL score, total comorbidities, hemoglobin, sodium, and albumin. The elective-specific model

achieved superior performance (AUC 0.715) compared to the ED-specific model (AUC 0.686). Feature

importance analysis revealed that comorbidity burden had greater predictive value in ED patients (coeffi-

cient 0.047) compared to elective patients (-0.011), while hemoglobin showed stronger association in elective

patients (coefficient -0.096 vs. -0.057).

Figure S9 provides visual representation of these findings, including readmission rates by admission type,

length of stay distributions, age distributions, and the stacked bar chart showing the proportion of patients

in each length of stay category by admission type.

21



Contribution to ENHANCE Score The sparse logistic regression assigned 0 points to emergency de-

partment admission alone, reflecting the minimal difference in overall readmission rates (20.9% vs. 20.6%,

p=0.654). However, the CHF + ED interaction received 1 point based on the significant synergistic effect of

+9.8 percentage points in readmission risk, representing the strongest interaction identified in our analysis.

D.4 Domain 4: Temporal Patterns in Readmissions

Research Question Are there seasonal or time-based patterns in readmissions that could enhance pre-

diction models?

Methodology We analyzed all the admissions spanning in our dataset. We examined seasonal, monthly,

and day-of-week variations in readmission rates, as well as holiday period effects and time-to-readmission

distributions. Statistical significance was assessed using ANOVA for seasonal patterns, chi-square tests for

categorical temporal variables, and Mann-Whitney U tests for continuous temporal measures.

Seasonal and Monthly Patterns: Seasonal variation in readmission rates was minimal and not statis-

tically significant (F=1.098, p=0.348). Table S10 shows readmission rates ranging from 20.56% (Winter)

to 21.15% (Fall), representing only a 0.59 percentage point seasonal variation. Monthly analysis revealed

greater variation, with rates ranging from 20.44% (December) to 21.60% (September), representing a 1.16

percentage point monthly range. Despite this variation, the overall seasonal pattern remained non-significant.

Table S10: Seasonal Readmission Patterns

Season Total Admissions Readmissions Rate (%)

Winter 28,151 5,789 20.56
Spring 27,500 5,785 21.04
Summer 29,258 6,111 20.89
Fall 28,403 6,007 21.15

Day of Week Effects: Table S11 presents the weekend effect analysis. Weekend admissions showed

a statistically significant but modest increase in readmission risk (21.34% vs. 20.76%, p=0.040, Chi-

square=4.232). The weekend effect of +0.58 percentage points, while small, was consistent across the study

period, affecting 28,801 weekend admissions out of 113,312 total admissions (25.4%). Individual day analysis

revealed Sunday as having the highest readmission rate (21.54%), while Tuesday showed the lowest (20.45%).

Table S11: Weekend vs. Weekday Readmission Analysis

Day Type Total Admissions Readmissions Rate (%) P-Value

Weekday 84,511 17,547 20.76
0.040

Weekend 28,801 6,145 21.34

Holiday Period Effects: Analysis of holiday period effects revealed a statistically significant protective

effect, with readmission rates of 20.57% during holiday periods compared to 21.09% during regular periods
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(Chi-square=4.044, p=0.044). This -0.52 percentage point difference affected 39,254 holiday period admis-

sions compared to 74,058 regular period admissions. The holiday effect suggests reduced readmission risk,

possibly due to changes in discharge planning practices or patient behavior during holiday periods.

Time to Readmission Distribution: Analysis of 13,611 readmissions within 30 days revealed a median

time to readmission of 13.0 days. The distribution showed a bimodal pattern with peaks in the first two

weeks: 27.9% occurred within the first week (3,798 readmissions), 29.0% in week 2 (3,953 readmissions),

22.1% in week 3 (3,013 readmissions), and 20.7% in week 4 (2,822 readmissions). This pattern indicates that

the highest risk period for readmission occurs within the first two weeks after discharge, with the second

week showing the peak occurrence.

Temporal Interaction Effects: We examined interactions between temporal patterns and patient char-

acteristics. Season × age group interactions showed minimal variation, with a maximum range of 0.067

across different combinations. Weekend × comorbidity interactions revealed that certain conditions may be

more sensitive to weekend effects, with CHF patients showing readmission rates of 29.8% on weekends versus

28.4% on weekdays, though these differences were modest.

Figure S10 illustrates these temporal patterns, including seasonal variations, monthly trends, day of week

effects, and the distribution of time to readmission across the 30-day follow-up period.

Contribution to ENHANCE Score Based on the statistically significant weekend effect (+0.58 per-

centage points, p=0.040), the sparse logistic regression assigned 1 point for weekend admission. While the

effect size was modest, weekend admission represents an easily identifiable risk factor that can be automat-

ically captured from admission data. The holiday period effect, despite being statistically significant, was

not incorporated due to its protective nature and smaller clinical impact. Seasonal effects were excluded due

to lack of statistical significance (p=0.348).

D.5 Domain 5: ECG Findings and Readmission Risk

Research Question Do specific ECG abnormalities correlate with increased readmission risk?

Methodology We analyzed eight ECG parameters available for 16,847 patients (14.9% of the cohort). The

analysis included seven numeric parameters (ventricular rate, corrected QT interval, T axis, QRS duration,

PR interval, R axis, P axis) and one categorical parameter (ECG interpretation). For numeric parameters,

we used Mann-Whitney U tests and calculated effect sizes and AUC values. The categorical interpretation

parameter was analyzed using chi-square tests with CramÃ©r’s V effect size.

Data Availability Limitations ECG data availability was substantially limited across the cohort, with

parameter availability ranging from 10.9% to 14.9% of patients (average 13.9%). The most complete param-

eters (corrected QT interval, ventricular rate, QRS duration, R axis, T axis, and ECG interpretation) were

available for 16,847 patients (14.9%), while PR interval was available for 12,791 patients (11.3%) and P axis

for 12,391 patients (10.9%). This limited availability substantially restricts the utility of ECG parameters

as general predictors in our cohort.
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Key Findings Among the analyzed parameters, ventricular rate showed the strongest association with

readmission risk (AUC 0.575, Cohen’s d=0.239, p<0.001), with readmitted patients having a mean ven-

tricular rate 5.35 bpm higher than non-readmitted patients (83.5 vs. 78.2 bpm). Table S12 presents the

ECG parameters ranked by their predictive power. Five of eight parameters showed statistically significant

associations with readmission: corrected QT interval (AUC 0.552, +8.88 ms longer), T axis deviation (AUC

0.536, +8.85Â° deviation), QRS duration (AUC 0.520, +2.31 ms longer), and PR interval (AUC 0.513, -1.09

ms shorter). The categorical ECG interpretation parameter showed no significant association (p=0.169).

Table S12: ECG Parameters and Readmission Risk

Parameter Type P-Value Effect Size AUC Mean Difference

Ventricular Rate (bpm) Numeric <0.001 d=0.239 0.575 +5.35
Corrected QT Interval (ms) Numeric <0.001 d=0.141 0.552 +8.88
T Axis (degrees) Numeric <0.001 d=0.135 0.536 +8.85
QRS Duration (ms) Numeric <0.001 d=0.079 0.520 +2.31
PR Interval (ms) Numeric 0.037 d=-0.029 0.513 -1.09
R Axis (degrees) Numeric 0.337 d=0.024 0.505 +1.36
P Axis (degrees) Numeric 0.590 d=0.000 0.503 +0.01
ECG Interpretation Categorical 0.169 CV=0.982 N/A N/A

Clinical Patterns The significant ECG findings revealed consistent patterns associated with increased

readmission risk. Patients at higher risk demonstrated: (1) increased cardiac workload (higher ventricular

rates), (2) prolonged cardiac repolarization (longer corrected QT intervals), (3) altered electrical axis patterns

(T axis deviation), and (4) prolonged cardiac conduction (longer QRS duration). Notably, PR interval showed

the only negative association, with shorter intervals associated with increased readmission risk, though this

effect was modest (d=-0.029).

ECG Abnormality Burden We attempted to create composite ECG abnormality burden scores from

the five significant parameters, but the limited data availability prevented meaningful burden analysis. The

overlapping missing data patterns meant that comprehensive ECG scoring could only be applied to a small

subset of patients, further limiting clinical applicability.

Figure S11 visualizes the ECG findings, showing parameter significance levels, data availability patterns,

and the distribution of ventricular rate by readmission outcome as the strongest individual predictor.

Contribution to ENHANCE Score Due to limited data availability (average 13.9%) and modest effect

sizes (largest Cohen’s d=0.239), ECG parameters were not included in the final ENHANCE score. This

decision prioritized the score’s broad applicability, as incorporating ECG parameters would have restricted

its use to the minority of patients with available ECG data. While ventricular rate and other ECG parameters

showed statistically significant associations with readmission risk, their clinical utility was outweighed by

the substantial reduction in score applicability. Future implementations could consider ECG parameters

as optional risk modifiers when data is available, but they should not be required components of the core

scoring system.
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D.6 Domain 6: Subgroup Analysis

Age-Stratified Analysis Age-stratified analysis revealed declining HOSPITAL score discrimination with

increasing age, from AUC 0.698 in patients under 50 years to AUC 0.622 in those 85 years and older. This

0.093 AUC range indicated substantial age-related performance variation. Table S13 presents the detailed

age group analysis. The 50–64 age group demonstrated optimal HOSPITAL score performance (AUC 0.715),

while readmission rates increased progressively with age from 15.6% in patients under 50 to 23.4% in those

85 and older. Notably, mean HOSPITAL scores also increased with age (2.43 to 3.38), suggesting that while

older patients had higher baseline risk scores, the discriminative ability of the HOSPITAL score paradoxically

decreased.

Table S13: HOSPITAL Score Performance by Age Group

Age Group N Patients Readmission Rate (%) HOSPITAL AUC Mean HOSPITAL Score

<50 14,678 15.6 0.698 2.43
50–64 20,450 19.9 0.715 2.87
65–74 28,300 21.7 0.682 3.16
75–84 28,660 21.6 0.653 3.24
≥85 21,224 23.4 0.622 3.38

Gender-Specific Analysis Gender-specific analysis showed similar performance in males (AUC 0.679)

and females (AUC 0.673), with readmission rates of 21.4% and 20.4% respectively. The minimal AUC differ-

ence of 0.005 suggested that the HOSPITAL score performs equally well across genders. However, significant

differences emerged in comorbidity patterns: males had substantially higher prevalences of ischemic heart

disease (24.4% vs. 10.5%), chronic kidney disease (10.5% vs. 5.7%), and diabetes mellitus (31.5% vs. 26.7%),

while females were slightly older on average (71.0 vs. 69.0 years). These patterns suggest gender-specific

risk profiles despite similar overall prediction performance.

Advanced Comorbidity Interactions Analysis of pairwise comorbidity interactions among the six most

common conditions revealed significant synergistic effects beyond simple additive risk. Table S14 presents the

strongest interactions. The DYSLIP + CKD combination demonstrated the highest synergistic effect (+9.2

percentage points beyond having either condition alone), affecting 5,021 patients with a 30.1% readmission

rate. HTN + CKD ranked second (+8.7 percentage points), affecting 7,694 patients. Notably, chronic kidney

disease appeared in the top five synergistic interactions, confirming its role as a key driver of interaction

effects previously identified in Domain 1.

Prior Admission History Effects The analysis of prior admission history revealed dramatic effects on

both readmission rates and HOSPITAL score discrimination. Table S15 shows the progressive deterioration

in both outcomes and predictive performance. Readmission rates increased from 13.7% in patients with

no prior admissions to 51.3% in those with more than five prior admissions, representing a 37.6 percentage

point increase. Simultaneously, HOSPITAL score AUC declined from 0.630 to 0.538, indicating reduced

discriminative ability in patients with extensive admission histories. This pattern suggests that traditional

risk factors become less predictive in patients with very high baseline risk from repeated hospitalizations.
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Table S14: Advanced Comorbidity Interaction Analysis

Combination N Patients Readmission Rate (%) Effect vs Either Alone

DYSLIP + CKD 5,021 30.1 +9.2%
HTN + CKD 7,694 30.4 +8.7%
IHD + CKD 3,515 31.2 +7.5%
DM + CKD 4,815 30.7 +6.7%
DYSLIP + MALIGNANCY 3,087 28.4 +6.7%
HTN + MALIGNANCY 4,715 29.1 +6.3%
DM + MALIGNANCY 2,367 30.2 +5.4%
IHD + MALIGNANCY 1,333 28.5 +3.4%

Table S15: Prior Admission History Effects on Performance

Prior Admissions N Patients Readmission Rate (%) HOSPITAL AUC

None 60,477 13.7 0.630
1 23,687 22.1 0.600
2 12,164 28.2 0.586
3–5 12,924 36.1 0.561
>5 4,060 51.3 0.538

Subgroup-Specific Optimal Thresholds Analysis of optimal thresholds revealed important subgroup-

specific patterns. For HOSPITAL scores, younger patients (<65 years) showed optimal thresholds of 3.0,

while older patients (≥75 years) required higher thresholds of 4.0 for optimal sensitivity-specificity balance.

Gender-specific laboratory thresholds showed meaningful differences only for hemoglobin (males 12.1 g/dL

vs. females 10.8 g/dL), while sodium (137 mmol/L) and albumin (3.4 g/dL) thresholds were consistent

across genders. These findings suggest that age-specific calibration may improve prediction performance,

particularly in older populations where standard thresholds may be suboptimal.

Comorbidity Effect Modification by Admission History We examined how comorbidity effects var-

ied by admission history, revealing important patterns of effect modification. For patients with no prior

admissions, traditional comorbidities like hypertension (+2.3 percentage points) and diabetes (+2.9 per-

centage points) showed strong effects. However, these effects diminished or even reversed in patients with

extensive admission histories (>5 admissions), where hypertension showed a negative effect (-4.0 percentage

points) and diabetes showed minimal effect (+0.1 percentage points). This pattern suggests that in very

high-risk patients, individual comorbidities provide less additional prognostic information compared to the

admission history itself.

Figure S12 illustrates these subgroup differences, including HOSPITAL score performance by age group,

readmission rates by age and gender, and comorbidity burden patterns across different demographic strata.

D.7 Domain 7: Advanced Machine Learning Comparison

Feature Engineering and Dataset Preparation We constructed a comprehensive feature matrix incor-

porating 49 variables across eight distinct feature groups: demographic (1 feature), hospital score (1 feature),

comorbidities (9 features), laboratory values (27 features), procedures (3 features), admission context (3 fea-

tures), temporal factors (2 features), and derived composite scores (3 features). The final dataset contained

113,312 samples with complete feature coverage and no missing values after preprocessing. This comprehen-
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sive feature set enabled direct comparison of ML approaches while maintaining the clinical interpretability

essential for score development.

Model Performance Comparison Table S16 presents the comparative performance of five machine

learning approaches using stratified train-test splits (80/20). The ensemble model achieved the highest

performance (AUC 0.719), followed closely by XGBoost (0.718), gradient boosting (0.717), random forest

(0.715), and logistic regression (0.710). Cross-validation results were consistent with test performance,

confirming model stability. However, substantial overfitting was observed in tree-based models (0.063–0.066

AUC difference between training and test), while logistic regression demonstrated minimal overfitting (0.002).

Table S16: Machine Learning Model Performance Comparison

Model CV AUC Test AUC Train AUC Overfitting

Logistic Regression 0.711 0.710 0.712 0.002
Random Forest 0.716 0.715 0.777 0.063
Gradient Boosting 0.716 0.717 0.783 0.066
XGBoost 0.718 0.718 0.784 0.066
Ensemble N/A 0.719 0.785 0.066

Feature Importance Analysis Cross-model feature importance analysis revealed strong consensus on

the most predictive variables despite different algorithmic approaches. Table S17 presents the top 10 features

from the ensemble model using permutation importance. Prior year admissions emerged as the strongest

predictor (importance 0.0042), followed by hospital score (0.0023) and enhanced laboratory score (0.0013).

Analysis across all models identified consensus features appearing in multiple top-10 rankings: enhanced

laboratory score (5/5 models), prior year admissions count (5/5 models), hospital score (4/5 models),

hemoglobin (4/5 models), and LDH (4/5 models). Feature ranking correlations between models ranged

from 0.179 (XGBoost-Ensemble) to 0.897 (Random Forest-Gradient Boosting), indicating substantial agree-

ment on feature importance hierarchies.

Table S17: Top 10 Features by Importance in the Ensemble Model

Feature Importance

prior year admissions-count 0.0042
hospital score 0.0023
enhanced lab score 0.0013
ldh last-numeric 0.0010
plt last-numeric 0.0007
weight last-numeric 0.0005
index- length of stay 0.0005
sbp last-numeric 0.0004
wbc last-numeric 0.0004
hb last-numeric 0.0003

Performance vs. Complexity Trade-off Analysis We evaluated model efficiency by calculating the

ratio of test AUC to model complexity (ranked 1–5). Table S18 demonstrates that logistic regression achieved

the highest efficiency score (0.710), balancing strong performance with minimal complexity and overfitting.
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While the ensemble model achieved the best absolute performance (0.719), its efficiency was lowest (0.144)

due to maximum complexity. Tree-based models showed intermediate efficiency but concerning overfitting

patterns that could compromise generalizability in clinical deployment.

Table S18: Model Efficiency Analysis

Model Test AUC Complexity Efficiency Overfitting

Logistic Regression 0.710 1 0.710 0.002
Random Forest 0.715 3 0.238 0.063
Gradient Boosting 0.717 4 0.179 0.066
XGBoost 0.718 4 0.179 0.066
Ensemble 0.719 5 0.144 0.066

Performance Ceiling Analysis The ML analysis established important benchmarks for ENHANCE

score development. With the HOSPITAL score baseline at approximately 0.676 AUC and the best ML

performance at 0.752 AUC, the achievable performance gap is 0.076 AUC points. Setting a realistic target

of capturing 70% of this improvement gap yields an ENHANCE score target of 0.706 AUC, representing a

clinically meaningful improvement of 0.030 AUC points over the HOSPITAL score. This analysis suggests

that substantial improvements are possible through enhanced feature engineering and model optimization

while maintaining clinical interpretability.

Clinical Implementation Considerations The analysis revealed that logistic regression, despite achiev-

ing lower absolute performance than complex ensemble methods, offers superior characteristics for clinical

implementation: minimal overfitting (0.002 vs. 0.066), high interpretability, computational efficiency, and

robust generalization. The modest performance gain from complex models (0.009 AUC improvement) may

not justify the substantial increase in implementation complexity, reduced interpretability, and overfitting

concerns. These findings support the development of an enhanced linear scoring system that captures the key

predictive relationships identified across all models while maintaining the transparency essential for clinical

decision-making.

Figure S13 shows the comprehensive machine learning comparison, including model performance, over-

fitting analysis, feature importance consensus, performance-complexity trade-offs, ROC curve comparisons,

and efficiency rankings.

D.8 Domain 8: Temporal Validation

Year-over-Year Performance Analysis Year-over-year analysis from 2017 to 2023 demonstrated moder-

ate temporal stability in HOSPITAL score performance. Table S19 presents the annual performance metrics

across the study period. HOSPITAL score AUC ranged from 0.624 (2017, n=168) to 0.684 (2021, n=18,526),

representing a 0.061 AUC range over seven years. Notably, the 2017 cohort was substantially smaller (168

patients) compared to subsequent years (15,435–21,199 patients), likely contributing to the lower initial

AUC. Readmission rates showed minimal temporal variation, ranging from 17.9% (2017) to 22.5% (2018),

with no significant correlation with year (r=0.000, p=1.000). Mean HOSPITAL scores declined from 4.30

(2017) to approximately 3.0 in recent years, suggesting evolving patient characteristics or clinical practices.

28



Table S19: Yearly Performance and Patient Characteristics

Year N Patients Readmission Rate (%) HOSPITAL AUC Mean HOSPITAL Score

2017 168 17.9 0.624 4.30
2018 18,454 22.5 0.660 3.20
2019 20,296 22.2 0.680 3.16
2020 15,435 20.1 0.679 3.03
2021 18,526 20.0 0.684 2.96
2022 19,234 20.0 0.677 3.04
2023 21,199 20.5 0.676 3.04

Covariate Shift Analysis Analysis of temporal shifts in key predictive variables revealed one statistically

significant change over the study period. Table S20 presents the temporal evolution of six critical vari-

ables. Comorbidity burden showed a significant decrease from 1.98 to 1.60 conditions per patient (r=-0.821,

p=0.023), representing a -0.37 condition decrease over time. HOSPITAL scores also declined substantially

(-1.26 points, r=-0.714, p=0.071), though this change did not reach statistical significance. Laboratory val-

ues showed modest improvements, with hemoglobin increasing (+0.59 g/dL) and albumin improving (+0.19

g/dL), though these changes were not statistically significant. Age remained stable (-0.07 years), indicating

consistent demographic characteristics across the study period.

Table S20: Temporal Covariate Shifts

Variable Early Period Late Period Change Correlation P-Value

Age (years) 69.63 69.56 -0.07 -0.607 0.148
Comorbidities 1.98 1.60 -0.37 -0.821 0.023*
HOSPITAL Score 4.30 3.04 -1.26 -0.714 0.071
Hemoglobin (g/dL) 10.92 11.51 +0.59 0.071 0.879
Sodium (mmol/L) 139.35 139.52 +0.17 0.179 0.702
Albumin (g/dL) 3.25 3.44 +0.19 0.536 0.215

Temporal Train-Test Split Validation To assess temporal generalizability, we employed a strict tempo-

ral split using 2017–2020 for training (54,353 patients) and 2021–2023 for testing (58,959 patients). Table S21

presents the temporal validation results for all three models. All models demonstrated excellent temporal sta-

bility with minimal performance degradation. The HOSPITAL score showed virtually no performance drop

(training AUC 0.676 vs. testing AUC 0.676, difference −0.001), ENHANCE maintained strong performance

(training AUC 0.685 vs. testing AUC 0.687, difference +0.002), and ML-ENHANCE showed acceptable

degradation for an ensemble model (training AUC 0.763 vs. testing AUC 0.752, difference −0.011). ML-

ENHANCE achieved a 0.076 AUC improvement over HOSPITAL in the temporal test set, confirming its

superior predictive performance across time periods.

Table S21: Temporal Validation Results

Model Training AUC Testing AUC Performance Drop

HOSPITAL 0.676 0.676 −0.001
ENHANCE 0.685 0.687 +0.002
ML-ENHANCE 0.763 0.752 −0.011
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Model Calibration Over Time Calibration analysis across temporal periods revealed improving model

calibration over time. Early period calibration (2017–2019, n=38,918) showed a Brier score of 0.1648,

while late period calibration (2020–2023, n=74,394) demonstrated improved calibration with a Brier score

of 0.1558. This 0.009 improvement in Brier score suggests that model predictions became more accurate

relative to observed outcomes over time, possibly reflecting improvements in clinical care, documentation

quality, or patient selection processes.

Temporal Stability Assessment The temporal validation analysis revealed several key insights for EN-

HANCE score development. First, the HOSPITAL score demonstrated moderate temporal stability with an

AUC range of 0.061 over seven years, suggesting reasonable but not perfect stability. Second, the significant

decline in comorbidity burden over time (-0.37 conditions) indicates evolving patient populations that could

affect model performance. Third, all three models showed excellent prospective validation performance with

minimal degradation, confirming their temporal robustness. Fourth, improving calibration over time suggests

potential benefits from periodic model recalibration.

Figure S14 displays the temporal validation results, including yearly performance trends, patient volume

changes, covariate shifts over time, temporal train-test performance comparison, and HOSPITAL score

distribution evolution across years.

Implications for ENHANCE Score Deployment The temporal validation analysis supports several

recommendations for ENHANCE score implementation. The excellent temporal stability demonstrated

by both baseline and enhanced models validates the robustness of the modeling approach across different

time periods. However, the significant temporal shift in comorbidity burden suggests the need for ongoing

monitoring of model performance and potential periodic recalibration. The improving calibration over time

indicates that the healthcare system may be evolving in ways that enhance predictive accuracy. For clinical

deployment, we recommend ongoing monitoring of model performance with potential annual recalibration

to maintain optimal predictive accuracy as patient populations and clinical practices continue to evolve.

D.9 Domain 9: Comprehensive Integration

ENHANCE Score Development Methodology The final ENHANCE score integrated evidence across

all nine analytical domains using sparse logistic regression with L1 regularization (penalty parameter C=1.5).

This approach systematically incorporated 16 evidence-based components derived from the comprehensive

analysis: enhanced comorbidity indicators, optimized laboratory thresholds, refined clinical factors, sig-

nificant interaction terms, and validated temporal modifiers. The baseline HOSPITAL score received a

multiplier of 1 point per unit, while additional components received integer point values ranging from 1 to

6 points based on their statistical significance and clinical impact. The scoring system maintained clinical

interpretability while achieving substantial performance improvements over the baseline HOSPITAL score.

ENHANCE Score Components Table S22 presents the complete ENHANCE score component struc-

ture. The score incorporates enhanced comorbidity indicators (CKD: 0 points, malignancy history: 1 point),

optimized laboratory values (severe hypoalbuminemia <3.0 g/dL: 2 points, moderate anemia <10.0 g/dL: 2

points, kidney dysfunction marker >60 mg/dL: 2 points), granular admission history (moderate frequency

1–2 admissions: 2 points, high frequency 3–4 admissions: 4 points, very high frequency ≥5 admissions: 6

points), significant interaction terms (CKD + CVA synergy: 2 points, CHF + ED interaction: 1 point),
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and temporal modifiers (weekend admission: 1 point). Notably, several traditional factors received 0 points

after sparse regularization, including CHF alone, advanced age, prolonged stay, and emergency admission,

indicating their effects were captured through interactions or other components.

Table S22: ENHANCE Score Components and Point Values

Category Component Criteria Points

Comorbidities
Chronic kidney disease Present 0
History of malignancy Present 1
Congestive heart failure Present 0

Laboratory Values
Severe hypoalbuminemia Albumin <3.0 g/dL 2
Moderate anemia Hemoglobin <10.0 g/dL 2
Kidney dysfunction Urea >60 mg/dL 2

Clinical Factors

Moderate admission frequency 1–2 prior year admissions 2
High admission frequency 3–4 prior year admissions 4
Very high admission frequency ≥5 prior year admissions 6
Advanced age Age ≥80 years 0
Prolonged stay Length of stay ≥7 days 0
Emergency admission Via ED 0

Interactions
CKD + CVA synergy Both conditions present 2
CHF + ED interaction CHF with ED admission 1

Temporal Weekend admission Admitted on weekend 1

Baseline HOSPITAL score Per unit of HOSPITAL score 1

Model Performance Comparison Table S24 shows the final model performance comparison on the

complete dataset of 113,312 patients. The ENHANCE score achieved an AUC of 0.696, representing a sta-

tistically significant improvement of 0.020 over the HOSPITAL score baseline (0.676). The ML-ENHANCE

model, incorporating 14 features in an ensemble approach, achieved the highest performance (AUC 0.752,

improvement 0.076), establishing the theoretical performance ceiling. The ENHANCE score captured 26.3%

of the potential improvement gap between HOSPITAL and the ML ceiling (0.020/0.076), representing a clin-

ically meaningful enhancement while maintaining interpretability and practical implementation feasibility.

Risk Stratification Performance The ENHANCE score enabled superior risk stratification through four

distinct risk categories defined using percentile-based cutoffs. Table S25 details the performance of each risk

category. Low risk patients (44.8% of cohort, scores 0–3) demonstrated a 10.8% readmission rate, while

Very High risk patients (10.9% of cohort, scores >10) showed a 44.8% readmission rate, representing a 4.2-

fold risk gradient. The Intermediate (22.4%, 20.5% rate) and High (21.9%, 30.2% rate) categories provided

granular risk stratification. This four-tier system substantially improved upon the traditional three-category

HOSPITAL approach, enabling more precise resource allocation and intervention targeting.

Clinical Impact Analysis Net reclassification analysis demonstrated substantial clinical impact through

improved high-risk patient identification. The ENHANCE score identified 37,112 patients in the High and

Very High risk categories combined (32.8% of cohort) compared to HOSPITAL’s 7,554 high-risk patients,
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Table S23: ENHANCE Score Components, Point Assignment, and Performance Results
Component Criteria Points N Patients Readmission Rate Evidence Source

Baseline Score
HOSPITAL Score Original 7 components ×1 113,312 20.9% L1 regression optimization

Laboratory Enhancements
Severe hypoalbuminemia Albumin < 3.0 g/dL +2 21,497 28.4% AUC= 0.637, Youden’s J
Moderate anemia Hemoglobin < 10.0 g/dL +2 26,280 32.1% AUC= 0.637, optimized threshold
Kidney dysfunction Urea > 60 mg/dL +2 29,202 27.8% Laboratory domain analysis

Comorbidity Enhancements
History of malignancy Present +1 8,680 29.6% OR= 1.66, p < 0.001

Admission History
Frequent admissions (1–2) Prior year count +2 35,851 24.2% ML consensus, clinically adjusted
Frequent admissions (3–4) Prior year count +4 10,578 36.1% ML consensus, clinically adjusted
Very frequent (≥ 5) Prior year count +6 4,060 51.3% ML consensus, clinically adjusted

Interaction Terms
CKD + CVA synergy Both conditions present +2 396 36.6% Highest synergistic effect
CHF + ED interaction Both factors present +1 6,412 29.2% Subgroup analysis

Temporal Factors
Weekend effect Weekend admission +1 28,801 21.3% +0.6% effect, p = 0.040

Risk Categories (Final ENHANCE Score)
Low Risk 0–3 points – 50,785 10.8% Bottom 44.8% of patients
Intermediate Risk 4–6 points – 25,415 20.5% Next 22.4% of patients
High Risk 7–10 points – 24,767 30.2% Next 21.9% of patients
Very High Risk >10 points – 12,345 44.8% Top 10.9% of patients

Table S24: Final Model Performance Comparison

Model AUC 95% CI Improvement over HOSPITAL

HOSPITAL 0.676 0.671–0.681 –
ENHANCE 0.696 0.691–0.701 +0.020
ML-ENHANCE 0.752 0.747–0.757 +0.076

Table S25: ENHANCE Risk Category Performance

Risk Category Score Range N Patients (%) Readmissions Rate (%)

Low 0–3 50,785 (44.8) 5,485 10.8
Intermediate 4–6 25,415 (22.4) 5,210 20.5
High 7–10 24,767 (21.9) 7,484 30.2
Very High >10 12,345 (10.9) 5,513 44.8

Total 0–27 113,312 (100.0) 23,692 20.9
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representing a 391.3% improvement in high-risk detection capability. Specifically, 12,997 readmissions oc-

curred in the ENHANCE High and Very High risk categories (54.8% of all readmissions) compared to 3,408

readmissions in the HOSPITAL high-risk category (14.4% of all readmissions). This enhanced risk stratifica-

tion enables more precise targeting of intensive interventions for patients most likely to benefit, potentially

improving both clinical outcomes and resource utilization efficiency.

ML-ENHANCE Model Architecture The ML-ENHANCE model employed an ensemble approach

incorporating 14 carefully selected features: prior year admissions count, enhanced laboratory score, HOS-

PITAL score, hemoglobin, albumin, urea, LDH, age, length of stay, CKD presence, malignancy history, CHF

presence, total comorbidities, and the ENHANCE score itself. This ensemble achieved training AUC 0.763

and testing AUC 0.752 (overfitting 0.011), representing the maximum achievable performance with avail-

able data. Feature importance analysis confirmed prior year admissions as the strongest predictor, followed

by enhanced laboratory score and HOSPITAL score, validating the hierarchical importance established in

earlier domains.

Score Distribution and Calibration The ENHANCE score demonstrated excellent calibration across

its range of 0–27 points, with 28 distinct score values observed in the cohort. Score distribution analysis

revealed a clear dose-response relationship: score 0 (5.8% readmission rate) to score 27 (maximum observed

readmission rate), confirming the score’s discriminative validity. The score distribution was appropriately

right-skewed, with most patients receiving low-to-moderate scores and a smaller proportion receiving high

scores, consistent with expected clinical risk distributions in general hospital populations.

Figure S15 provides a comprehensive view of the ENHANCE score analysis, including model performance

comparisons, score distributions, risk stratification, ROC curve comparisons, calibration plots, feature impor-

tance rankings, subgroup performance, temporal stability, and final model comparisons across all approaches.

Validation Summary and Clinical Readiness The comprehensive integration achieved all predefined

validation criteria: (1) statistically significant improvement over HOSPITAL baseline (p<0.001), (2) tempo-

ral stability across 2017–2023 period, (3) consistent performance across demographic subgroups, (4) superior

risk stratification with 4.2-fold risk gradient, (5) excellent calibration across score range, (6) clinically inter-

pretable component structure, and (7) practical implementation feasibility. The ENHANCE score represents

a substantial advancement in readmission prediction, capturing 26.3% of the theoretical performance ceiling

while maintaining the interpretability and practical advantages essential for clinical implementation. These

results support immediate translation to clinical practice with appropriate validation in external healthcare

systems.

E Detailed Results and Analysis

Patient characteristics stratified by readmission status revealed significant differences across all major vari-

ables. Readmitted patients were older (71.8 ± 16.0 vs 69.4 ± 17.2 years, p<0.001), more likely to be male

(54.4% vs 52.2%, p<0.001), and had higher prevalence of most comorbidities including diabetes mellitus

(35.6% vs 27.6%), chronic kidney disease (11.7% vs 7.3%), and malignancy (11.3% vs 6.7%, all p<0.001).

Laboratory values showed substantial differences, with readmitted patients having lower hemoglobin (10.8
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± 2.4 vs 11.8 ± 2.3 g/dL), lower albumin (3.2 ± 0.6 vs 3.5 ± 0.5 g/dL), and lower sodium (138.9 ± 4.5 vs

139.3 ± 3.9 mEq/L, all p<0.001).

Table S26: Temporal Distribution of Study Population

Year N Patients Readmissions Rate (%)

Development Period (2017–2020)
2017 168 30 17.9
2018 18,454 4,143 22.5
2019 20,296 4,511 22.2
2020 15,435 3,106 20.1
Subtotal 54,353 11,790 21.7

Validation Period (2021–2023)
2021 18,526 3,700 20.0
2022 19,234 3,855 20.0
2023 21,199 4,347 20.5
Subtotal 58,959 11,902 20.2

Total 113,312 23,692 20.9

Temporal analysis revealed variation in readmission rates across study years, with the highest rate ob-

served in 2018 (22.5%) during the early development period. Rates stabilized around 20% in the validation

period (2021–2023), supporting the robustness of the temporal split. The development cohort (2017–2020)

included 54,353 patients with 11,790 readmissions (21.7%), while the validation cohort (2021–2023) included

58,959 patients with 11,902 readmissions (20.2%). This temporal distribution (Table S26) demonstrates

appropriate balance between development and validation sets while maintaining similar readmission rates.

The ENHANCE score development integrated findings across all nine analytical domains to create a

comprehensive risk assessment tool. The final score ranged from 0 to 27 points with a mean of 6.17 ± 4.56,

distributed across four risk categories with clear risk progression. Component analysis revealed the clinical

relevance of each enhancement: prior admission history demonstrated the strongest predictive gradient

(51.3% readmission rate for ≥5 prior admissions vs 13.7% for none), while laboratory enhancements showed

substantial effects (severe hypoalbuminemia <3.0 g/dL: 28.4% readmission rate, moderate anemia <10.0

g/dL: 32.1% rate). Interaction terms provided additional discriminative value, with CKD+CVA synergy

affecting 396 patients at 36.6% readmission rate and CHF+ED interaction affecting 6,412 patients at 29.2%

rate.

The ML-ENHANCE ensemble model demonstrated acceptable generalization with training AUC of 0.763

and testing AUC of 0.752, indicating well-controlled overfitting (0.011 difference). Feature importance analy-

sis confirmed the hierarchical importance established across all analytical domains, with prior year admissions

consistently ranking as the top predictor across all algorithms.

Subgroup analysis revealed consistent ENHANCE score applicability across demographic categories. Age-

stratified performance showed expected variation, with AUC values ranging from 0.698 in patients <50 years

to 0.622 in patients ≥85 years. Gender-specific analysis demonstrated comparable performance between

males (AUC 0.679) and females (AUC 0.673), with minimal difference of 0.006.

Calibration analysis using reliability diagrams showed that all models follow the calibration line closely

across low-to-moderate predicted probabilities (0.1–0.4 range), where the majority of predictions fall. The

ENHANCE model demonstrated particularly good calibration across deciles of predicted risk, with confi-

dence intervals encompassing the perfect calibration line for most deciles. Temporal calibration analysis

34



demonstrated improving performance over time, with Brier scores declining from 0.162 (2018 peak) to 0.151

(2023), suggesting enhanced prediction accuracy as clinical documentation and care practices evolved.

Decision curve analysis demonstrated superior net benefit for the ENHANCE score compared to the

HOSPITAL score across clinically relevant threshold probabilities (15%–45%). At a 25% threshold probabil-

ity, commonly used for intensive discharge planning decisions, the ENHANCE score provided a net benefit

of 0.042 versus 0.038 for the HOSPITAL score, representing a 10.5% improvement in clinical utility. At this

threshold, implementing the ENHANCE score would correctly identify 142 additional high-risk patients per

1,000 admissions while avoiding unnecessary intensive interventions for 89 low-risk patients.

F Comprehensive Discussion and Clinical Implementation

The enhanced risk stratification provided by ENHANCE enables more nuanced clinical decision-making

across the care continuum. The four-tier system supports differentiated intervention strategies tailored to

risk level. Low risk patients (10.8% readmission rate) can receive standard discharge planning protocols,

allowing resource conservation for higher-risk patients. Intermediate risk patients (20.5% rate) warrant

enhanced discharge coordination with structured follow-up appointments and medication reconciliation. High

risk patients (30.2% rate) require intensive case management, rapid post-discharge contact within 48 hours,

and coordination with primary care providers. Very High risk patients (44.8% rate) demand comprehensive

multidisciplinary interventions including potential admission avoidance strategies, home health services, and

specialized transitional care programs.

The practical impact of enhanced stratification is substantial: ENHANCE enables healthcare systems

to focus intensive interventions on 32.8% of patients (High and Very High risk categories) who account for

54.2% of all readmissions, while allowing standard care for 44.8% of patients (Low risk) who contribute only

23.4% of readmissions. This efficient resource allocation model maximizes clinical impact while maintaining

cost-effectiveness.

Implementation of ENHANCE requires minimal additional data collection beyond standard HOSPITAL

score components. The evidence-based enhancements (chronic kidney disease, malignancy history, optimized

laboratory thresholds, and granular admission history) are routinely captured in electronic health records

through standard clinical documentation workflows. The straightforward additive scoring maintains the

simplicity that has facilitated HOSPITAL score adoption while providing enhanced predictive capability and

superior risk stratification.

The temporal stability of ENHANCE supports its deployment across diverse healthcare settings and

time periods. Unlike complex machine learning models requiring frequent recalibration, ENHANCE demon-

strates robust performance characteristics that reduce maintenance requirements and support sustainable

implementation. The consistent performance across age groups (AUC 0.622–0.715) and gender (male AUC

0.679, female AUC 0.673) further supports broad applicability across diverse patient populations.

Beyond direct cost savings from prevented readmissions, ENHANCE implementation offers systemic

benefits including reduced emergency department congestion, improved bed availability for new admissions,

enhanced patient satisfaction through appropriate care transitions, and potential reduction in readmission

penalties under value-based payment models. The clear risk stratification supports transparent communi-

cation with payers regarding resource allocation decisions and provides objective criteria for care intensity

determinations.

Healthcare systems can leverage ENHANCE to optimize care transitions, allocate case management
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resources efficiently, and design risk-stratified care pathways that match intervention intensity to patient

risk. The clear delineation of risk categories facilitates communication among clinical teams, administrators,

and payers regarding appropriate care intensity and resource requirements, supporting both clinical decision-

making and administrative planning processes.
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Figure S2: Receiver operating characteristic curves demonstrating discrimination performance for HOSPI-
TAL (AUC 0.676), ENHANCE (AUC 0.696), and ML-ENHANCE (AUC 0.752) models.

Cost-Based Threshold Optimization

The following figures present detailed cost optimization analyses for each model individually, complementing

the comparative analysis in the main text Figure 4. Each figure shows cost curves by cost ratio with optimal

thresholds, cost-minimizing threshold versus cost ratio with 95% confidence intervals, sensitivity-specificity

trade-offs, cost decomposition at the 5:1 ratio, number needed to screen, and summary statistics.
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0.0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f P

os
it

iv
es

Model Calibration (Reliability Diagram)
HOSPITAL
ENHANCE
ML-ENHANCE
Perfect calibration

Calibration Metrics
==============================

Model        Brier    Slope    Intercept 
----------------------------------------
HOSPITAL     0.1546   5.095    -2.472    
ENHANCE      0.1522   5.097    -2.489    
ML-ENHANCE   0.1413   7.120    -3.029    

Interpretation:
 Brier Score: Lower is better (0-1)
 Slope: 1.0 is perfect calibration
 Intercept: 0.0 is perfect calibration

0.0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
Pr

ob
ab

ili
ty

ENHANCE Calibration by Deciles
(with 95% CI)

Perfect calibration
ENHANCE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Predicted Probability

0

2

4

6

8

D
en

si
ty

Distribution of Predicted Probabilities
ENHANCE Predictions
Overall Rate (0.209)

2017 2018 2019 2020 2021 2022 2023
Year

0.146

0.148

0.150

0.152

0.154

0.156

0.158

0.160

0.162

Br
ie

r 
Sc

or
e

ENHANCE Calibration Over Time

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Mean Predicted Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
bs

er
ve

d 
Pr

ob
ab

ili
ty

Calibration by Risk Category
Low (n=50785)
Intermediate (n=25415)
High (n=24767)
Very High (n=12345)

Figure S6: Model Calibration Analysis. (A) Reliability diagram showing predicted versus observed readmis-
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Figure S7: Comprehensive comorbidity analysis showing: (A) Individual comorbidity effects with odds ratios
and confidence intervals; (B) Comorbidity burden distribution across patient population; (C) Readmission
rate by comorbidity burden; (D) Comorbidity prevalence; (E) Simple vs. weighted comorbidity scores; (F)
ROC curves comparing simple count vs. weighted scoring.
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Figure S8: Laboratory value analysis showing: (A) Laboratory predictive power ranked by AUC; (B)
Hemoglobin distribution by outcome; (C) HOSPITAL threshold performance; (D) Readmission rate by
laboratory abnormality burden; (E) Enhanced laboratory score distribution; (F) Laboratory risk direction
visualization.
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Figure S9: ED admission pattern analysis showing: (A) Readmission rates by admission type; (B) Length
of stay distribution; (C) Age distribution by admission type; (D) Comorbidity burden comparison; (E)
HOSPITAL score by admission type; (F) Length of stay categories by admission type.
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Figure S10: Temporal patterns analysis showing: (A) Seasonal variations in readmission rates; (B) Monthly
patterns; (C) Day of week patterns; (D) Weekend vs. weekday comparison; (E) Time to readmission distri-
bution; (F) Yearly trends.
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Figure S11: ECG findings analysis showing: (A) ECG parameter significance; (B) ECG abnormality burden
effect on readmission; (C) ECG data availability; (D) Distribution of key ECG parameters; (E) ECG abnor-
mality prevalence; (F) ROC curves for ECG parameters.
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Figure S12: Subgroup analysis showing: (A) HOSPITAL score performance by age group; (B) Readmission
rates by age and gender; (C) Comorbidity burden by age group; (D) Gender-specific comorbidity patterns;
(E) Prior admission effect on readmission; (F) HOSPITAL score distribution by age.
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Figure S13: Machine learning comparison showing: (A) Model performance comparison; (B) Overfitting
analysis; (C) Feature importance for best model; (D) Performance vs. complexity trade-off; (E) ROC curves
comparison; (F) Model efficiency ranking.
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Figure S14: Temporal validation showing: (A) Yearly readmission rates; (B) HOSPITAL performance over
time; (C) Patient volume over time; (D) Temporal train/test performance comparison; (E) Covariate shifts
over time; (F) HOSPITAL score distribution over time.

46



HOSPITAL ENHANCE ML-ENHANCE

0.66

0.68

0.70

0.72

0.74

0.76

0.78

AU
C

0.676

0.696

0.752

+0.020

+0.076

Model Performance Comparison

0 5 10 15 20 25
ENHANCE Score

100

101

102

103

104

Pa
tie

nt
s (

lo
g)

ENHANCE Score Distribution

Low Intermediate High Very High
0.0

0.1

0.2

0.3

0.4

Re
ad

m
iss

io
n 

Ra
te

ENHANCE Risk Categories

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve Comparison

HOSPITAL (AUC 0.676)
ENHANCE (AUC 0.696)
ML-ENHANCE (AUC 0.752)

CKD Malignancy CHF Prior Admits > 0
0

10

20

30

40

Pr
ev

al
en

ce
 (%

)

Key ENHANCE Components

0 5 10 15 20 25
ENHANCE Score

0.0

0.2

0.4

0.6

0.8

1.0

Re
ad

m
iss

io
n 

Ra
te

Risk by ENHANCE Score

0.0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 P

os
iti

ve
s

Calibration Plot
ENHANCE

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
 AUC (shuffle)

Enhanced Lab Score

Enhance Score

Prior Year Admissions-Count

Index- Length Of Stay

Urea Last-Numeric

Ldh Last-Numeric

Hb Last-Numeric

Index Age

ML-ENHANCE Feature Importance

<50
50

-64
65

-74
75

-84 85

Age Group

0.00

0.05

0.10

0.15

0.20

Re
ad

m
iss

io
n 

Ra
te

ENHANCE Performance by Age

H-Lo
w

H-In
t

H-High
E-L

ow E-I
nt

E-H
igh

E-V
High

Risk Categories

0.0

0.1

0.2

0.3

0.4

Re
ad

m
iss

io
n 

Ra
te

HOSPITAL vs ENHANCE Risk Categories
HOSPITAL
ENHANCE

2018 2019 2020 2021 2022 2023
Year

0.66

0.68

0.70

0.72

0.74

EN
HA

NC
E 

AU
C

Note: 2017 excluded (n=168)

ENHANCE Temporal Validation

HOSPITAL ENHANCE ML-ENHANCE

0.66

0.68

0.70

0.72

0.74

0.76

0.78
AU

C

0.676

0.696

0.752

+0.020

+0.076

Final Model Comparison

Figure S15: Comprehensive ENHANCE score analysis showing: (A) Model performance comparison; (B)
ENHANCE score distribution; (C) Risk categories; (D) ROC curve comparison; (E) Key components; (F)
Risk by score; (G) Calibration plot; (H) ML-ENHANCE feature importance; (I) Performance by age; (J)
HOSPITAL vs ENHANCE by score range; (K) Temporal stability; (L) Final model comparison.
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Figure S16: HOSPITAL score threshold optimization analysis. Panel A: cost curves by cost ratio with
optimal thresholds (stars). Panel B: cost-minimizing threshold vs. cost ratio with 95% CIs; dashed line
indicates Youden’s J threshold (3.0). Panel C: sensitivity-specificity trade-off. Panel D: cost decomposition
at 5:1 ratio. Panel E: number needed to screen. Panel F: summary table with 95% CIs.
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Figure S17: ENHANCE score threshold optimization analysis. Panel A: cost curves by cost ratio with
optimal thresholds (stars). Panel B: cost-minimizing threshold vs. cost ratio with 95% CIs; dashed line
indicates Youden’s J threshold (7.0). Panel C: sensitivity-specificity trade-off. Panel D: cost decomposition
at 5:1 ratio. Panel E: number needed to screen. Panel F: summary table with 95% CIs.
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Figure S18: ML-ENHANCE score threshold optimization analysis. Panel A: cost curves by cost ratio with
optimal thresholds (stars). Panel B: cost-minimizing threshold vs. cost ratio with 95% CIs; dashed line
indicates Youden’s J threshold (0.22). Panel C: sensitivity-specificity trade-off. Panel D: cost decomposition
at 5:1 ratio. Panel E: number needed to screen. Panel F: summary table with 95% CIs.
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