Estimating the Number of HTTP/3 Responses in
QUIC Using Deep Learning

Barak Gahtan, Robert J. Shahla, Reuven Cohen, Alex M. Bronstein
Technion Israel Institute of Technology, Haifa, Israel
{barakgahtan, shahlarobert, rcohen, bron}@cs .technion.ac.il

Abstract—QUIC, a new and increasingly used transport proto-
col, enhances TCP by offering improved security, performance,
and stream multiplexing. These features, however, also impose
challenges for network middle-boxes that need to monitor and
analyze web traffic. This paper proposes a novel method to
estimate the number of HTTP/3 responses in a given QUIC
connection by an observer. This estimation reveals server behav-
ior, client-server interactions, and data transmission efficiency,
which is crucial for various applications such as designing a
load balancing solution and detecting HTTP/3 flood attacks. The
proposed scheme transforms QUIC connection traces into image
sequences and uses machine learning (ML) models, guided by
a tailored loss function, to predict response counts. Evaluations
on more than seven million images—derived from 100,000 traces
collected across 44,000 websites over four months—achieve up to
97% accuracy in both known and unknown server settings and
92% accuracy on previously unseen complete QUIC traces.

I. INTRODUCTION

Quick UDP Internet Connections (QUIC) [1] is increas-
ingly replacing TCP as a primary transport protocol due
to enhanced security, performance, and stream multiplexing.
In HTTP/3 [2], QUIC can simultaneously deliver multiple
HTTP objects over separate streams, reducing head-of-line
blocking and improving responsiveness. Each stream’s data is
carried in distinct QUIC frames, and each QUIC packet may
contain multiple frames from different objects. Since streams
operate independently, a delay on one stream does not impede
others [2, 3]. HTTP/3 maps HTTP semantics onto QUIC
streams, assigning a client-to-server request to one stream and
the corresponding server-to-client response to another [2].

This paper considers an observer that sees packets flowing
between a QUIC client and server, and aims to estimate how
many HTTP objects the connection carries. Such estimation
aids various tasks, including load balancing [4], where knowl-
edge of how many requests are multiplexed within a single
connection is crucial. Another use case is detecting HTTP/3
flood attacks [JS], where multiple requests are sent in quick
succession. Since the attack pattern closely resembles normal
traffic, identifying it remains a challenge.

This paper introduces DecQUIC, a scheme enabling a
passive observer to estimate the number of request/response
pairs in a QUIC connection. Building on prior work of [6} [7],
we first capture a QUIC connection trace and divide it into
multiple time windows. For each window, we generate two
histograms: one for packets sent by the client and another for
packets sent by the server. Combined with packet length, tim-
ing, and density information, these histograms form an RGB

image, where the red channel encodes server packets, the green
channel encodes client packets, and the blue channel is unused.
Compared to the single-channel grayscale images in earlier
works of [[7], our RGB representation provides directional and
density cues essential for distinguishing concurrent HTTP/3
streams. Single-channel images offer only broad overviews,
insufficient for parsing complex HTTP/3 traffic patterns within
QUIC.

With the trace represented as a sequence of RGB images,
we train an ML model to predict the number of HTTP/3
responses initiated in each image window. The scheme can
also be evaluated for requests similarly. DecQUIC supports
both online estimation (e.g., within 100 ms of connection start)
and offline assessment (e.g., over longer durations). Because
the task involves discrete counts rather than class labels or
continuous values, we define a discrete regression problem
and develop a specialized loss function tailored to counting
erTors.

To train and evaluate DecQUIC, we curated a labeled dataset
of over 100,000 QUIC traces from 44,000 websites, collected
across four months and multiple vantage points. From these
traces, we generated over seven million images with varying
window lengths. Using time windows of 7 = 0.1 or 7 = 0.3
seconds, DecQUIC achieved up to 97% accuracy. [1_]

While counting HTTP/3 responses might appear simpler
than comprehensive QUIC traffic classification, traditional
non-ML methods can struggle with parallel HTTP/3 streams
and overlapping packet patterns in a single QUIC connection.
The ML-based approach in DecQUIC exploits fine-grained,
directional, and density features in a scalable way, improv-
ing on hand-crafted heuristics by learning subtle temporal
and length-based signatures. Moreover, as QUIC evolves and
server behaviors diversify, ML models can adapt more flexibly
than fixed rules, ensuring our method remains robust across a
wide range of deployment scenarios.

The rest of this paper is organized as follows: Section
reviews related work. Section |[II] describes the proposed deep
learning (DL) scheme and its challenges. Section [[V] discusses
the proposed loss function used for training the ML models.
Section |V| presents an evaluation of the trained ML models
on out-of-training sample QUIC traces and out-of-distribution
sample web servers. Section uses the trained ML models

'We make the code and the collected dataset available using
https://github.com/robshahla/VisQUIC.


https://github.com/robshahla/VisQUIC

to estimate the number of HTTP/3 responses over complete
QUIC traces. Finally, Section concludes the paper.

II. RELATED WORK

The growth of encrypted network traffic has driven the
increased use of ML techniques for flow-based analysis. Clas-
sical methods such as k-Nearest Neighbors, Random Forest,
Naive Bayes, and Support Vector Machines [8, 9} [10] have
been widely applied, and more recently, deep learning (DL)
approaches have emerged for classifying encrypted communi-
cations [11} [12].

Several studies have employed CNN-based approaches
for QUIC traffic classification. For instance, a two-stage
method [13]] achieved high accuracy on QUIC-based services,
while a multi-task approach [14] predicted various flow at-
tributes and outperformed simpler models on the ISCX [15]]
and QUIC [16] public datasets. However, these techniques
were trained primarily on Google’s services and focused on
classifying service types rather than estimating connection
characteristics as we do.

Ensemble-based ML methods have also been explored for
QUIC classification [17]], achieving high accuracy on a limited
set of traffic types sourced solely from a single Google server.
In contrast, our approach handles a broader set of web servers
and a far larger dataset.

Other approaches have shown strong results under con-
strained conditions. For example, satellite-only QUIC analy-
sis [18]] and a self-supervised method trained on Google-only
traffic [19] both achieve high accuracy. These approaches,
however, focus on specific environments or service-based
classification, unlike our method, which estimates fundamental
connection characteristics across diverse servers.

Other work has distinguished VPN from non-VPN en-
crypted traffic using complex ML pipelines [20} 21]], achieving
high accuracy. However, this binary classification differs from
our goal of estimating the number of HTTP/3 responses in
diverse QUIC traffic.

CESNET-QUIC22 [22] provides a large, diverse dataset of
QUIC traffic, but it includes limited packet-level information
and lacks HTTP/3 protocol details. These constraints make it
unsuitable for tasks like ours, which require full-connection
insights to estimate HTTP/3 responses.

Recent efforts using the CESNET-QUIC22 dataset have
focused on classifying QUIC services [23} [24]], achieving fine-
grained accuracy but not addressing out-of-distribution scenar-
i0s. In contrast, our work estimates connection characteristics
rather than services and explicitly handles previously unseen
Servers.

In contrast to these existing classification efforts, our work
addresses the subtler challenge of counting concurrent HTTP/3
responses in scenarios with highly imbalanced classes and par-
tial concurrency. Most prior methods assume a limited server
set (often Google-centric) and do not explicitly tackle out-
of-distribution servers or the fine-grained concurrency within
modern QUIC streams. By focusing on response counts, we
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Fig. 1: A DecQUIC image, representing QUIC connection
activity. Pixel positions represent histogram bins (horizontal
and vertical axes corresponding to time and packet length, re-
spectively). The values of the red and green channels represent
normalized, per-window, histogram counts of the response and
request packets, respectively.

enable tasks such as load balancing and attack detection, where
concurrency plays a crucial role.

III. DECQUIC FRAMEWORK

We consider an observer monitoring encrypted QUIC traf-
fic. Although payloads are hidden, the observer knows each
packet’s direction, length, and timestamp. Our goal is to esti-
mate how many HTTP/3 responses occur within a connection
by representing raw QUIC traces as labeled images suitable
for ML.

We segment each QUIC trace into fixed-length time win-
dows (T' = 0.1 or T = 0.3 seconds) using a sliding window
technique [25]]. During training, we use a 90% overlap be-
tween consecutive windows to increase data diversity. For
evaluation, we use 0% overlap, ensuring each response is
counted once. By decrypting QUIC with available SSL keys,
we determine how many HTTP/3 responses start within each
window, thereby labeling each image.

Fig [1| shows an example of the constructed image. Each
window 1is divided into M = 32 time bins and N = 32 length
bins, creating a 32 x 32 grid. We count packets per bin in
both client-to-server (green channel) and server-to-client (red
channel) directions, apply min-max normalization, and map
the values to pixel intensities (0-255). The blue channel is
unused. This approach extends FlowPic [7], which only pro-
duced single-channel images, by incorporating directional and
density information critical for multiplexed HTTP/3 streams.
Additionally, balancing bin size is essential: coarser bins lose
detail, while finer bins increase computation complexity with
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Fig. 2: Three DecQUIC images with their HTTP/3 response
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Fig. 3: Response distribution for training and evaluation
datasets with a 7 = 0.1-second window.

little accuracy gain [[6]. Our tested values are 32, 64, 128 and
256, as was discussed in the work of [6].

Our dataset, derived from over 100,000 QUIC traces from
44,000 websites from tens of web servers captured from
various vantage points, yields millions of images. However,
several challenges arise. First, visually similar images can
represent vastly different response counts (Fig [2). Second, the
distribution of classes (i.e., number of responses) is skewed,
making some counts rare. We include only the distribution for
the T = 0.1-second dataset in Fig 3] for brevity. The T = 0.3-
second dataset exhibits similar trends, with slight variations in
the distribution due to the larger window size. Third, predicting
an integer response count is a discrete regression task, not a
standard classification or continuous regression scenario.

To address class imbalance, we apply minimal noise-based
augmentation to underrepresented classes (those with a high
response count above 10). Specifically, we add low-level
Gaussian noise (o = 2.55, i.e., 1% of the 8-bit pixel range)
only to the minority-class images. This slight perturbation
introduces subtle variability in pixel intensities, helping the
model generalize better without disrupting temporal depen-
dencies or altering the fundamental traffic patterns. We also
design a custom loss function that penalizes large deviations
between predicted and actual response counts.

Our neural network architecture (Fig is based on [26, 27|,
and it combines CNN layers, for spatial feature extraction, a
GRU, to capture temporal patterns, and a self-attention [28]]
mechanism, to focus on critical time bins. Two fully connected
layers finalize the prediction. Section [[V]provides more details
on the custom loss. Through the rest of the paper, the term
“class” is used to denote the number of responses associated
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Fig. 4: The proposed DecQUIC neural network architecture.

with each image (the label).

IV. A DISCRETE REGRESSION L0OSS FUNCTION

During model development, we tested several standard loss
functions, each targeting different aspects of our discrete, ordi-
nal, and imbalanced prediction task. Cross-entropy struggled
with class imbalance, while MSE and MAE—designed for
continuous regression—overlooked the discrete and ordinal
nature of our labels. The Huber loss proved robust to outliers
but did not preserve class order.

These limitations led us to propose a new aggregated loss:

L=aFL+(1-a)(BORL+(1-4)DBL).

It combines three components: (1) a focused loss (FL) [29]]
to mitigate class imbalance by emphasizing hard-to-classify
samples; (2) a distance-based loss (DBL) [30] that penalizes
predictions based on their distance from the true class; and (3)
an ordinal regression loss (ORL) [31,132], which maintains the
natural order of the classes.

The FL term [29] builds on the weighted cross-entropy loss
[33] by adding a focusing parameter, y, which adjusts the
influence of each sample on the training process based on the
classification confidence. This parameter, y, modifies the loss
function by scaling the loss associated with each sample by
(1-p;)?, where p, is the predicted probability of the true class
y. This scaling reduces the loss from easy examples (where p;
is high), thereby increasing it for hard, misclassified examples,
focusing training efforts on samples where improvement is
most needed. Accordingly, the term is:

= E(x,y) [_W(y) . (1 - yy(x))y

where x denotes the input sample, y is the one-hot encoded
ground truth label, §(x) represents the model’s output of class
probabilities, §,(x) denotes the predicted probability of the
true class y, and w(y) is a weight inversely proportional to
the class frequency of y in the training dataset. By assigning
a higher weight to less frequent classes, the model places
more emphasis on accurately classifying these classes during
training. It is an effective strategy for dealing with class

FL(x,y) -y log§(x)],



TABLE I: Summary statistics of QUIC traces and images per
dataset of each web server.

Web Server Websites | Traces T=0.1 T=0.3
youtube.com 399 2,109 139,889 54,659
semrush.com 1,785 9,489 474,716 221,477
discord.com 527 7,271 623,823 235,248
instagram.com 3 207 17,003 7,112
mercedes-benz.com 46 66 9,987 2,740
bleacherreport.com 1,798 8,497 781,915 331,530
nicelocal.com 1,744 1,666 148,254 48,900
facebook.com 13 672 25,919 10,988
pcmag.com 5,592 13,921 1,183,717 | 385,797
logitech.com 177 728 56,792 28,580
google.com 1,341 2,149 81,293 29,068
cdnetworks.com 902 2,275 207,604 85,707
independent.co.uk 3,340 3,453 176,768 68,480
cloudflare.com 26,738 447700 | 1,347,766 | 341,488
jetbrains.com 35 1,096 34,934 18,470
pinterest.com 43 238 6,465 2,360
wiggle.com 4 0 0 0
cnn.com 27 2,127 91,321 59,671

imbalance [34 [35] 29]]. FL thus minimizes the relative loss
for well-classified examples, while emphasizing difficult-to-
classify ones.

The DBL term [30]

DBL =By y) | Y, 9:(®) - li =l
i

with y denoting the ground truth class, is essentially a discrete
regression loss that penalizes the model’s output according
to the predicted class’s distance from the true label. The
distance is computed as the absolute difference between the
class indices and the target class.

Finally, the ORL term [31} 32] is given by

ORL =E(xy) [-y" loga(§) — (1 —y) logo (1 - )],

with o denoting the sigmoid function saturating the input
between 0 and 1. ORL uses a binary cross-entropy loss
function, which compares the activation of each output neuron
to a target that shows if the true class is greater than or
equal to each class index, thus helping the model determine
the order of the classes. Both DBL and ORL consider the
relations between classes; they do so in different ways: DBL
penalizes predictions based on the numerical distance, while
ORL makes explicit use of the classes’ order. It focuses on
preserving the correct order among predictions rather than the
numerical distance between them.

Parameters «, 8, and vy control the relative influence of these
components. Higher @ emphasizes FL, while lower « favors
ORL+DBL. A higher 8 increases the weight of ORL over
DBL. Increasing y within FL heightens focus on the hardest
examples. In Section [V] we present an ablation study showing
the benefits of each term.

V. EVALUATING THE MACHINE LEARNING MODELS

We now present a quantitative evaluation of our framework
under two conditions: known and unknown web servers. In
the former case, a set of models were trained and evaluated

TABLE II: CAP results for known web servers, from five
random training/test splits at 7 = 0.1 and T = 0.3.

Iteration T=0.1 T=0.3
+1 +2 +1 +2
1 093 | 097 | 091 | 0.96
2 092 | 096 | 0.90 | 0.97
3 093 | 098 | 091 | 095
4 094 | 097 | 092 | 093
5 091 | 096 | 0.92 | 0.94

exclusively on the QUIC traces pertaining to the web servers
assumed at inference time. In the latter case, a leave-two-
servers-out evaluation was performed. We use a leave-two-
servers-out approach—chosen because we have 18 web servers
and aim to reserve about 10% of the web servers for out-
of-distribution evaluation. Details on training and test set
construction are provided later in this section.

Models were trained with both 7 = 0.1 and T = 0.3 second
windows on traces from 44,000 websites and 100,000 traces
collected over four months from 18 different web servers
that support QUIC. Table [I| summarizes server-level statistics.
Classes above 20 are exceedingly rare (e.g., only 0.003% of
images are labeled as class 21) and thus excluded from training
and testing, leaving the majority (90% for T = 0.1 seconds and
95% for T = 0.1 seconds windows) concentrated on classes
0-20.

A. Results for Known Web Servers

We first evaluate our framework when the web servers
are known. Each server’s traces were split 80 : 20 into
training and testing sets, and we trained five models on
different random splits. During training we used a batch
size of 64, the Adam optimizer, and a ReduceLROnPlateau
scheduler that reduced the learning rate by 30% upon reaching
a validation-loss plateau. Early stopping with a patience of six
epochs prevented overfitting. We performed a grid search to
determine the optimal loss parameters «, 8,y by selecting the
combination that yielded the lowest validation loss. We tested
a €{0,0.3,0.5,0.7,1}, B € {0,0.4,0.6, 1}, and y € {1,2,3}.
For T = 0.1 second windows, @ = 0.7, 8 = 0.4, and y = 2
were optimal; for 7 = 0.1 second windows, y = 3 worked best
with the same a and S.

Fig [5] shows box plots of predicted classes vs. true classes
(0-20) for out-of-training-sample traces from one of the five
iterations. For T = 0.1 second, lower-value classes (0, 1,2)
form thin lines, indicating minimal prediction variance and
very high accuracy. As true class values increase, predictions
spread more widely. For T = 0.3 second, accurate predictions
extend up to class 4, and even the upper classes (16-20) show
tighter, less biased distributions. This improvement aligns with
dataset distributions: in the 7' = 0.1 seconds dataset, classes
0, 1, 2 constitute about 75% of the data, whereas in the 7 = 0.3
second dataset these classes form only 47%, yielding a more
balanced scenario. Thus, 7 = 0.3 second windows provide
more robust standalone accuracy, advantageous for online use
cases.
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Fig. 5: Known-server prediction errors (iteration 1). Red lines: median; blue boxes: 25-75% intervals.

We also introduce the Cumulative Accuracy Profile (CAP),
which tolerates a +k-class error:
CAP.«(y.¥) = % "1 L(lyi = 9il < k), where y represents the
vector of true class labels, ¥ denotes the model’s predictions,
k specifies the tolerance level (e.g., +1 or 2 classes), n is the
total number of samples, and 1(-) is the indicator function that
evaluates to 1 if the condition is met and O otherwise. Unlike
exact-match metrics, CAP credits predictions close to the true
label. Table [II| presents CAP scores for five training/test splits,
using both 7 = 0.1 seconds and 7 = 0.3 seconds datasets,
without stratified sampling. The results show that a large
majority of predictions fall within one or two classes of the
correct label, reflecting strong performance.

B. Results for Unknown Web Servers

We now evaluate the model’s ability to generalize to web
servers unseen during training. Here, we partition the datasets
into ten iterations, each time holding out two web servers
for testing and using the remaining servers for training.
This leave-two-servers-out approach tests out-of-distribution
performance, as client-server dynamics can differ widely
across servers. For example, if “semrush.com” is held out, the
model may never encounter high-value classes during training,
making generalization on those classes difficult. Similarly, if
testing servers lack higher-value classes (e.g., “instagram.com”
or “pcmag.com”), the model cannot learn to predict those
classes at all. All models here use the same training procedure
described previously. Fig [6] shows an example for 7 = 0.1
seconds where “independent.co.uk” and “google.com” are the
testing servers. Predictions are accurate for lower classes
(0—1), remain within an acceptable +2 class range for mid-
level classes (2—12), and grow more scattered for higher-
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Fig. 6: Unknown-server prediction errors (T 0.1) with
independent.co.uk” and google.com” as test servers. Red:
median; blue boxes: 25-75% intervals.

value classes. This iteration’s CAP is 83% at +1 tolerance
and 90% at +2, illustrating partial generalization but reduced
performance at upper classes.

Tables [l and [V] summarize CAP results for all ten
iterations with 7 = 0.1 seconds and T = 0.3 seconds windows,
respectively. While low-value classes remain well-predicted,
mid and high-value classes pose greater challenges in the



TABLE III: CAP results (unknown servers) for 10 random
iterations, each testing on 2 servers and training on the rest,
using T = 0.3-second windows.

Testing Servers +1 +2
bleacherreport.com, cloudflare.com | 0.62 | 0.76
facebook.com, cdnetworks.com 0.59 | 0.72
logitech.com, mercedes-benz.com 0.66 | 0.77
bleacherreport.com, semrush.com 0.63 | 0.75
independent.co.uk, google.com 0.83 | 0.90
cnn.com, facebook.com 0.82 | 0.88
discord.com, youtube.com 0.66 | 0.84
discord.com, google.com 0.61 | 0.80
discord.com, independent.co.uk 0.83 | 0.88
bleacherreport.com, google.com 0.78 | 0.85

TABLE IV: CAP results (unknown servers) for 10 random
iterations, each testing on 2 servers and training on the rest,
using T = 0.1-second windows.

Testing Servers +1 +2
jetbrains.com, semrush.com 0.69 | 0.78
pcmag.com, discord.com 0.86 | 0.94
instagram.com, cloudflare.com 0.79 | 0.90
instagram.com, bleacherreport.com 0.78 | 0.87
youtube.com, jetbrains.com 0.86 | 0.92
pcmag.com, cloudflare.com 0.80 | 0.89
facebook.com, nicelocal.com 0.75 | 0.85
cdnetworks.com, independent.co.uk | 0.71 0.81
cnn.com, facebook.com 0.86 | 0.90
youtube.com, nicelocal.com 0.81 0.87

unknown-server setting.

VI. EVALUATING ON COMPLETE TRACES

This section evaluates the model’s ability to estimate the
total number of HTTP/3 responses in a trace. To do so, we
generated new, non-overlapping windows from the same
test traces used previously (Section iteration 1, known-
server scenario). We then summed the models’ per-window
predictions and compared them to the true total responses per
trace.

Fig [/| presents scatter plots of predicted vs. true total
responses for 7 = 0.1 seconds and 7 = 0.3 s windows. Each
point represents one trace, and transparency (6 = 0.05) reveals
areas of high point density. For example, if a trace is composed
of five non-overlapping images with labels 1,0,2,4,1 (total
8) and model predictions 1,0,3,4,1 (total 9), it appears as
(8,9). Multiple traces with the same totals stack, increasing
point opacity.

For T = 0.1 seconds windows, the test set has 12,520 traces
(avg. 21.2 images/trace); for T = 0.3 s windows, 12,142 traces
(avg. 7.5 images/trace) are used. We use a +3 tolerance level
because for both window lengths, the points represent the
aggregated prediction sum and, thus, the aggregated errors as
well. The T = 0.1 seconds model achieves 92.6% accuracy
versus 71% for T = 0.3s. Additionally, the T = 0.1 seconds
predictions cluster more tightly along the diagonal, suggesting
finer temporal granularity aids cumulative accuracy.

Figures [/[fa) and illustrate a notable difference in
predictive behavior between the models trained and evaluated

with 7 = 0.1- and T = 0.3-second window sizes. In particular,
the 7 = 0.3 model displays a series of strong diagonal patterns,
whereas these are far less evident for the 7 = 0.1 model.
Several factors drive this phenomenon:

1) Variance in true labels: When using 7 = 0.1-second
windows, the majority of images fall into lower-valued
classes (e.g., 0—3 responses). Consequently, the model
trained on such a distribution excels in this narrow lower-
range. By contrast, a 7 = 0.3-second window lumps
together more concurrent requests, producing a broader
range of labeled classes (including mid-to-high values).
As a result, any systematic errors the model makes
on higher counts tend to repeat across many samples,
appearing as clustered diagonals in the scatter plot.

2) Cumulative effect of mispredictions: When summing
per-window predictions to obtain the total number of re-
sponses per trace, even minor window-level misestimates
can compound. If a single window is misestimated by a
few counts (especially in mid-to-high classes), subsequent
partial errors accumulate, shifting the aggregated predic-
tion upward or downward. This systematic drift manifests
visually as diagonal streaks above or below the perfect-
prediction line.

3) Class imbalance at high values: Although 7' = 0.3-
second windows increase the likelihood of higher-class
labels, those classes are still relatively rare compared to
classes near the mean. The model’s exposure to fewer
high-class examples during training can lead to ampli-
fied inaccuracies on that subset, reinforcing the diagonal
banding once these errors propagate across entire traces.

4) Coarser temporal granularity: Finally, with larger win-
dows, nuanced changes in packet arrival rates are “aver-
aged out” in each image, potentially masking fine-grained
cues that help distinguish, say, 10 from 12 concurrent
responses. In contrast, T = 0.1-second windows offer
more granular snapshots, which, while increasing com-
putational cost, can bolster per-trace accuracy by limiting
each misestimation’s scope.

Both figures highlight that the choice of window length
is inherently use-case-dependent. Shorter windows typically
enhance aggregated trace-level accuracy—particularly for of-
fline analyses that require precise counts—whereas longer
windows can yield better single-image accuracy (as seen in
Section . However, the finer temporal resolution of 7' = 0.1
seconds also increases computational overhead during both
training and inference. Ultimately, balancing these trade-offs
is essential for practitioners deploying DecQUIC in diverse
QUIC environments.

VII. CONCLUSION

We addressed the challenge of estimating the number of
HTTP/3 responses in QUIC connections, a task essential for
network management, load balancing, and service optimiza-
tion. Despite QUIC’s encryption and variable conditions, our
deep learning-based approach achieves high accuracy. Using
a dataset of over seven million images from 100,000 QUIC
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traces, we evaluated models in both known and unknown
server scenarios, reaching up to 97% CAP accuracy. Moreover,

we

accurately estimated the total responses in over 12,000

traces with 92.6% accuracy, demonstrating our method’s ro-
buggness and applicability.
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